Log in

Characterization of Pb2+ biosorption from aqueous solution by Rhodotorula glutinis

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The yeast Rhodotorula glutinis was examined for its ability to remove Pb2+ from aqueous solution. Within 10 min of contact, Pb2+ sorption reached nearly 80% of the total Pb2+ sorption. The optimum initial pH value for removal of Pb2+ was 4.5–5.0. The percentage sorption increased steeply with the biomass concentration up to 2 g/l and thereafter remained more or less constant. Temperature in the range 15–45°C did not show any significant difference in Pb2+ sorption by R. glutinis. The light metal ions such as Na+, K+, Ca2+, and Mg2+ did not significantly interfere with the binding. The Langmuir sorption model provided a good fit throughout the concentration range. The maximum Pb2+ sorption capacity q max and Langmuir constant b were 73.5 mg/g of biomass and 0.02 l/mg, respectively. The mechanism of Pb2+ removal by R. glutinis involved biosorption by direct biosorptive interaction with the biomass through ion exchange and precipitation by phosphate released from the biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3a, b
Fig. 4.
Fig. 5.
Fig. 6a, b.

Similar content being viewed by others

References

  1. Gower RA (1993) Lead toxicity: current concerns. Environ Health Perspect 100:177–187

    CAS  PubMed  Google Scholar 

  2. Eccles H (1999) Treatment of metal-contaminated wastes: why select a biological process? Trends Biotech 17:462–465

    Article  CAS  Google Scholar 

  3. Gadd GM (1992) Biosorption. J Chem Technol Biotechnol 55:302–304

    Google Scholar 

  4. Kapoor A, Viraraghavan T (1995) Fungal biosorption—an alternative treatment option for heavy metal bearing wastewaters: a review. Bioresour Technol 53:195–206

    Article  CAS  Google Scholar 

  5. Veglio F, Beolchini F (1997) Removal of metals by biosorption: a review. Hydrometallurgy 44:301–316

    Article  CAS  Google Scholar 

  6. Hu MZC, Norman JM, Faison BD, Reeves ME (1996) Biosorption of uranium by Pseudomonas aeruginosa strain CSU: characterization and comparison studies. Biotechnol Bioeng 51:237–247

    Article  Google Scholar 

  7. Volesky B, Holan ZR (1995) Biosorption of heavy metals. Biotechnol Prog 11:235–250

    CAS  PubMed  Google Scholar 

  8. Sag Y, Ozer D, Kustal T (1995) A comparative study of the biosorption of lead(II) ions to Z. ramigera and R. arrhizus. Process Biochem 30:169–174

    Article  CAS  Google Scholar 

  9. Blackwell KJ, Singleton I, Tobin JM (1995) Metal cation uptake by yeast: a review. Appl Microbiol Biotechnol 43:579–584

    Article  CAS  PubMed  Google Scholar 

  10. Rapoport AI, Muter OA (1995) Biosorption of hexavalent chromium by yeasts. Process Biochem 30:145–149

    Article  CAS  Google Scholar 

  11. Brady D, Duncan JR (1994) Bioaccumulation of metal cations by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 41:149–154

    Article  CAS  Google Scholar 

  12. Volesky B, May-Philips HA (1995) Biosorption of heavy metals by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 42:797–806

    Article  CAS  PubMed  Google Scholar 

  13. Salinas E, Orellano M, Rezza I, Martinez L, Marchesvky E, Tosetti M (2000) Removal of cadmium and lead from dilute aqueous solutions by Rhodotorula rubra. Bioresour Tech 72:107–112

    Article  CAS  Google Scholar 

  14. Kurek E, Czaban J, Bollag JM (1982) Sorption of cadmium by microorganisms in competition with other soil constituents. Appl Environ Microbiol 43:1011–1015

    CAS  Google Scholar 

  15. Falih AM (1998) Comparative toxicity of heavy metals to some yeasts isolated from Saudi Arabian soil. Bioresour Tech 64:193–198

    Article  CAS  Google Scholar 

  16. Boguslawska E, Dabrowski W (2001) The seasonal variability of yeasts and yeast-like organisms in water and bottom sediment of Szczecin lagoon. Int J Hyg Health 203:451–458

    Google Scholar 

  17. Rezza I, Salinas E, Elorza M, Tosetti M, Donati E (2001) Mechanisms involved in bioleaching of an aluminosilicate by heterotrophic microorganisms. Process Biochem 36:495–500

    Article  CAS  Google Scholar 

  18. Dias CT, Gomes NCM, Rosa CA, Linardi VR (1996) Yeast occurrence in a gold mining plant and screening for degradation of cyano-metals. Int Biodeter Biodegrad 37:133

    Article  Google Scholar 

  19. Cho DH, Chae HJ, Kim EY (2001) Synthesis and characterization of a novel extracellular polysaccharide from Rhodotorula glutinis. Appl Biochem Biotechnol 95:183–193

    CAS  PubMed  Google Scholar 

  20. Guezennec JG, Pignet P, Raguenes G, Deslandes E, Lijour Y, Gentric E (1994) Preliminary chemical characterization of unusual eubacterial exopolysaccharides of deep-sea origin. Carbohydrate Polym 24:287–294

    CAS  Google Scholar 

  21. Toeda K, Kurane R (1991) Microbial flocculant from Alcaligenes cupidus KT201. Agric Biol Chem 55:2793–2799

    CAS  Google Scholar 

  22. Kim EY, Park PK, Chae HJ (1998) Optimization of culture conditions for extracellular lipid production from Rhodotorula glutinis. Kor J Biotechnol Bioeng 13:58–64

    Google Scholar 

  23. Bradford, M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  24. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1955) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Google Scholar 

  25. Volesky B (1990) Removal and recovery of heavy metal by biosorption. In: Volesky B (ed) Biosorption of heavy metals. CRC Press, Boca Raton, pp 7–43

  26. Fourest E, Roux J (1992) Heavy metals biosorption by fungal mycelial by-product: Mechanisms and influence of pH. Appl Microbiol Biotechnol 37:399–403

    CAS  Google Scholar 

  27. Lopez A, Lazaro N, Priego JM, Marques AM (2000) Effect of pH on the biosorption of nickel and other heavy metals by Pseudomonas fluorescens 4F39. J Ind Microbiol Biotechnol 24:146–151

    Article  CAS  Google Scholar 

  28. Puranik PR, Paknikar KM (1999) Biosorption of lead, cadmium, and zinc by Citrobacter strain MCMB-181: characterization studies. Biotechnol Prog 15:228–237

    Article  CAS  PubMed  Google Scholar 

  29. Ariff AB, Mel M, Hasan MA, Karim MIA (1999) The kinetics and mechanism of lead (II) biosorption by powderized Rhizopus oligosporus. World J Microbiol Biotechnol 15:291–298

    Article  Google Scholar 

  30. Bedell GW, Darnall DW (1990) Immobilization of nonviable, biosorbent, algar biomass for the recovery of metal ions. In: Volesky B (ed) Biosorption of heavy metals. CRC Press, Boca Raton, pp 313–326

  31. Ahija P, Gupta R, Saxena RK (1999) Zn2+ biosorption by Oscillatoria anguistissima. Process Biochem 34:77–85

    Article  Google Scholar 

  32. Mogollon L, Rodriguez R, Larrota W, Ramirez N, Torres R (1998) Biosorption of nickel using filamentous fungi. Appl Biochem Biotech 70–72:593–601

    Google Scholar 

  33. Sudha BR, Abraham TE (2001) Biosorption of Cr(VI) from aqueous solution by Rhizopus niglicans. Bioresource Technol 79:73–81

    Article  Google Scholar 

  34. Sag Y, Kustal T (1995) Biosorption of heavy metals by Zoogloea ramizera: use of adsorption isotherms and a comparison of biosorption characteristics. Chem Eng J 60:181–188

    CAS  Google Scholar 

  35. Matheickal JT, Yu Q (1997) Biosorption of lead(II) from aqueous solutions by Phellinus badius. Minerals Eng 10:945–957

    Google Scholar 

  36. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403

    CAS  Google Scholar 

  37. Volesky B, Horan ZR (1995) Accumulation of cadmium, lead and nickel by fungal and wood biosorbents. Appl Biochem Biotechnol 53:133–145

    Google Scholar 

  38. Gadd GM, Mowll JL (1983) The relationship between cadmium uptake, potassium release and viability in Saccharomyces cerevisiae. FEMS Microb Letters 16:45–48

    Article  CAS  Google Scholar 

  39. Suhasini IP, Sriram G, Asolekar SR, Sureshkumar GK (1999) Biosorptive removal and recovery of cobalt from aqueous systems. Process Biochem 34:239–247

    Article  CAS  Google Scholar 

  40. Riordan C, Bustard M, Putt R, Mchale AP (1997) Removal of uranium from solution using residual brewery yeast: combined biosorption and precipitation. Biotech Lett 19:385–387

    CAS  Google Scholar 

  41. Simmons P, Tobin JM, Singleton I (1995) Considerations on the use of commercially available yeast biomass for the treatment of metal-containing effluents. J Ind Microbiol 14:240–246

    CAS  Google Scholar 

  42. Macaskie LE, Jeong BC, Tolley MR (1994) Enzymically accelerated biomineralization of heavy metals: Application to the removal of americium and plutonium from aqueous flows. FEMS Microbiol Rev 14:351–368

    Article  CAS  PubMed  Google Scholar 

  43. Remacle J (1990) The cell wall and metal binding. In: Volesky B (ed) Biosorption of heavy metals. CRC Press, Boca Raton, pp 83–92

  44. Davidova E, Kasparova S (1992) Adsorption of metals by yeast cell walls. Mikrobiologiya 61:1018–1022

    CAS  Google Scholar 

  45. Strandberg GW, Shumate SE, Parrott JR (1981) Microbial cells as biosorbents for heavy metals: accumulation of uranium by Saccharomyces serevisiae and Pseudomonas aeruginosa. Appl Environ Microbiol 41:237–245

    CAS  Google Scholar 

  46. Schwartz T, Hoffman S, Obst U (1998) Formation and bacterial composition of young, natural biofilms obtained from public bank-filtered drinking water systems. Wat Res 32:2787–2797

    Article  CAS  Google Scholar 

  47. Bott TR (1992) Introduction to the problem of biofouling in industrial equipment. In: Melo LF, Bott TR, Fletcher M, Capdeville B (eds) Biofilms: science and technology. Kluwer, Dordrecht, pp 3–11

    Google Scholar 

Download references

Acknowledgements

This research is supported by the University of Seoul (2001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eui Yong Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, D.H., Kim, E.Y. Characterization of Pb2+ biosorption from aqueous solution by Rhodotorula glutinis . Bioprocess Biosyst Eng 25, 271–277 (2003). https://doi.org/10.1007/s00449-002-0315-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-002-0315-8

Keywords

Navigation