Log in

The temporal evolution of monogenetic volcanism in the Central Andes: 40Ar/39Ar geochronology of El Negrillar volcanic field, Chile

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

El Negrillar volcanic field has the largest extent and erupted volume (~ 6.8 km3 DRE) of all the monogenetic centers of the Andean Central Volcanic Zone (CVZ). The volcanic field comprises 51 eruptive centers and 98 lava flows distributed in three clusters: Northern El Negrillar (NEN), Central El Negrillar (CEN), and Southern El Negrillar (SEN). Here, we present a geological map of El Negrillar, with detail of effusive and explosive volcanic deposits not previously mapped in the southern sector of the CEN and SEN clusters. Ten samples of El Negrillar’s deposits associated with effusive and phreatomagmatic activity were dated using 40Ar/39Ar geochronology, establishing, along with previously published dates, a geochronological characterization of the development of El Negrillar’s monogenetic field. The collected age data yields a range of 0.982 ± 0.008 to 0.141 ± 0.072 Ma, compared to previously published K–Ar ages for the same deposits range from < 1.5 Ma to 0.6 ± 0.4 Ma. The new ages presented here indicate that the effusive activity at El Negrillar (NEN, CEN, and SEN), and the phreatomagmatic activity in the CEN (dated for first time) occurred quasi-simultaneously (within error). The end of the volcanic activity within the monogenetic field occurred in the eastern sector of the CEN at 0.141 ± 0.072 Ma, which represents the youngest eruption ages of El Negrillar. If these new ages are revisited within the regional context of the SW sector of the Altiplano-Puna Volcanic Complex (APVC), the monogenetic volcanoes appear to be the result of a migration of mafic vents along a southwest-northeast trend, as shown by their age variation from the oldest to the youngest volcanic center: Morro Punta Negra, La Negrillar, El Negrillar, Tilocálar Sur, Tilocálar Norte, Cerro Tujle, El País, Puntas Negras, La Albóndiga Grande, and Cerro Overo. These results highlight the structural control on the emplacement of monogenetic mafic volcanism in the APVC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aguilera M, Ureta G, Grosse P, Németh K, Aguilera F, Vilches M (2022) Geomorphological, morphometric, and spatial distribution analysis of the scoria cones in the Negros de Aras monogenetic volcanic field, northern Chile. J Volcanol Geotherm Res 422:107458. https://doi.org/10.1016/j.jvolgeores.2021.107458

    Article  Google Scholar 

  • Anderson M, Low R, Foot S (2002) Sustainable groundwater development in arid, high Andean basins. Geol Soc Lond Spec Publ 193:133. https://doi.org/10.1144/GSL.SP.2002.193.01.11

    Article  Google Scholar 

  • Báez W, Carrasco Nuñez G, Giordano G, Viramonte JA, Chiodi A (2016) Polycyclic scoria cones of the Antofagasta de la Sierra basin, Southern Puna Plateau, Argentina. Geol Soc Lond Spec Publ 446:311–336. https://doi.org/10.1144/SP446.3

    Article  Google Scholar 

  • Barazangi M, Isacks B (1976) Spatial distribution of earthquakes and subduction of the Nazca plate beneath South America. Geology 4:686–692. https://doi.org/10.1130/0091-7613(1976)4%3c686:SDOEAS%3e2.0.CO;2

    Article  Google Scholar 

  • Beck SL, Zandt G, Myers SC, Wallace TC, Silver PG, Drake L (1996) Crustal-thickness variations in the Central Andes. Geology 24:407–410. https://doi.org/10.1130/0091-7613(1996)024%3c0407:CTVITC%3e2.3.CO;2

    Article  Google Scholar 

  • Bock B, Bahlburg H, Wörner G, Zimmermann U (2000) Tracing crustal evolution in the Southern Central Andes from Late Precambrian to Permian with geochemical and Nd and Pb isotope data. J Geol 108:515–535. https://doi.org/10.1086/314422

    Article  Google Scholar 

  • Burns DH, de Silva SL, Tepley F, Schmitt AK, Loewen MW (2015) Recording the transition from flare-up to steady-state arc magmatism at the Purico-Chascon volcanic complex, northern Chile. Earth Planet Sci Lett 422:75–86. https://doi.org/10.1016/j.epsl.2015.04.002

    Article  Google Scholar 

  • Charrier R, Muñoz N (1997) Geología y Tectónica del Altiplano Chileno. El Altiplano. Universidad de Chile, Santiago, Ciencia y Conciencia En Los Andes, pp 23–31

    Google Scholar 

  • Connor CB, Conway FM (2000) Basaltic volcanic fields. In: Sigurdsson H, Houghton BF, McNutt SR, Rymer H, Stix J, McNutt S (eds) Encyclopedia of Volcanoes, 1st edn. Academic Press, San Diego, pp 331–343

    Google Scholar 

  • Davidson J, Mpodozis C, Rivano S (1981) El Paleozoico de Sierra de Almeida, al Oeste de Monturaqui, Alta Cordillera de Antofagasta, Chile. Revista Geológica De Chile: an International Journal on Andean Geology 12:3–23

    Google Scholar 

  • de Silva SL (1989) Altiplano-Puna volcanic complex of the central Andes. Geology 17:1102–1106

    Article  Google Scholar 

  • de Silva SL, Francis P (1991) Volcanoes of the Central Andes 219:253–254

    Google Scholar 

  • de Silva SL, Gosnold WD (2007) Episodic construction of batholiths: insights from the spatiotemporal development of an ignimbrite flare-up. J Volcanol Geotherm Res 167:320–335. https://doi.org/10.1016/j.jvolgeores.2007.07.015

    Article  Google Scholar 

  • de Silva SL, Gregg PM (2014) Thermomechanical feedbacks in magmatic systems: implications for growth, longevity, and evolution of large caldera-forming magma reservoirs and their supereruptions. J Volcanol Geotherm Res 282:77–91. https://doi.org/10.1016/j.jvolgeores.2014.06.001

    Article  Google Scholar 

  • de Silva S, Zandt G, Trumbull R, Viramonte JG, Salas G, Jiménez N (2006) Large ignimbrite eruptions and volcano-tectonic depressions in the Central Andes: a thermomechanical perspective. Geol Soc Lond Spec Publ 269:47. https://doi.org/10.1144/GSL.SP.2006.269.01.04

    Article  Google Scholar 

  • Drew ST, Ducea MN, Schoenbohm LM (2009) Mafic volcanism on the Puna Plateau, NW Argentina: implications for lithospheric composition and evolution with an emphasis on lithospheric foundering. Lithosphere 1:305–318. https://doi.org/10.1130/L54.1

    Article  Google Scholar 

  • Gardeweg M, Ramírez CF (1982) Geología de los volcanes del Callejón de Tilocalar, Cordillera de los Andes-Antofagasta. In: III Congreso Geológico Chileno, A111–A123

  • Gardeweg M, Ramírez CF, Davidson J (1993) Mapa Geológico del Área del Salar de Punta Negra y del Volcán Llullaillaco, Región de Antofagasta. Escala 1:100.000. Servicio Nacional de Geología y Minería (SERNAGEOMIN), documentos de Trabajo No. 5

  • Gardeweg M, Pino H, Ramírez CF, Davidson J (1994) Mapa Geológico del Área de Imilac y Sierra Almeida, Región de Antofagasta. Escala 1:100.000. Servicio Nacional de Geología y Minería (SERNAGEOMIN), Documentos de Trabajo No. 7

  • Giambiagi L, Alvarez P, Spagnotto S (2016) Temporal variation of the stress field during the construction of the central Andes: constrains from the volcanic arc region (22–26°S), Western Cordillera, Chile, during the last 20 Ma. Tectonics 35(9):2014–2033. https://doi.org/10.1002/2016TC004201

    Article  Google Scholar 

  • Godoy B, Wörner G, Kojima S, Aguilera F, Simon K, Hartmann G (2014) Low-pressure evolution of arc magmas in thickened crust: the San Pedro-Linzor volcanic chain, Central Andes, Northern Chile. J S Am Earth Sci 52:24–42. https://doi.org/10.1016/j.jsames.2014.02.004

    Article  Google Scholar 

  • Godoy B, Wörner G, Le Roux P, de Silva S, Parada MA, Kojima S, González-Maurel O, Morata D, Polanco E, Martínez P (2017) Sr- and Nd- isotope variations along the Pleistocene San Pedro – Linzor volcanic chain, N. Chile: tracking the influence of the upper crustal Altiplano-Puna Magma Body. J Volcanol Geotherm Res 341:172–186. https://doi.org/10.1016/j.jvolgeores.2017.05.030

    Article  Google Scholar 

  • Godoy B, Taussi M, González-Maurel O, Renzulli A, Hernández-Prat L, le Roux P, Morata D, Menzies A (2019) Linking the mafic volcanism with the magmatic stages during the last 1 Ma in the main volcanic arc of the Altiplano-Puna Volcanic Complex (Central Andes). J S Am Earth Sci 95. https://doi.org/10.1016/j.jsames.2019.102295

  • González G, Cembrano J, Aron F, Veloso EE, Shyu JBH (2009) Coeval compressional deformation and volcanism in the central Andes, case studies from northern Chile (23°S-24°S). Tectonics 28. https://doi.org/10.1029/2009TC002538

  • González-Maurel O, le Roux P, Godoy B, Troll VR, Deegan FM, Menzies A (2019) The great escape: Petrogenesis of low-silica volcanism of Pliocene to Quaternary age associated with the Altiplano-Puna Volcanic complex of northern Chile (21°10′-22°50′S). Lithos 346–347. https://doi.org/10.1016/j.lithos.2019.105162

  • Grosse P, Danišík M, Apaza FD, Guzmán SR, Lahitte P, Quidelleur X, Self S, Siebe C, van Wyk de Vries B, Ureta G, Guillong M, De Rosa R, Le Roux P, Wotzlaw JF, Bachmann O (2022) Holocene collapse of Socompa volcano and pre- and post-collapse growth rates constrained by multi-system geochronology. Bull Volcanol 84:85. https://doi.org/10.1007/s00445-022-01594-0

  • Guilbaud MN, Siebe C, Layer P, Salinas S (2012) Reconstruction of the volcanic history of the Tacámbaro-Puruarán area (Michoacán, México) reveals high frequency of Holocene monogenetic eruptions. Bull Volcanol 74:1187–1211. https://doi.org/10.1007/s00445-012-0594-0

    Article  Google Scholar 

  • Guzmán SR, Petrinovic IA, Brod JA (2006) Pleistocene mafic volcanoes in the Puna-Cordillera Oriental boundary, NW-Argentina. J Volcanol Geotherm Res 158:51–69. https://doi.org/10.1016/j.jvolgeores.2006.04.014

    Article  Google Scholar 

  • Hoffmann C (2011) Petrografía y geoquímica de los conos del campo de lavas Negros de Aras (23°57’-24°26’ Lat. S. y 67°57’-68°42’ Long. O.) al norte del volcán Socompa, II región de Antofagasta, Chile. Undergraduate Thesis, Dep. de Ciencias de la Tierra, Univ. de Concepción, Chile

  • James D (2019) Controles estructurales en la distribución del volcanismo neógeno en el segmento Tilocálar-Socompa, Andes Centrales, Chile. Undergraduate Thesis, Dep. de Geología, Univ. Católica del Norte, Chile

  • Kay SM, Coira BL (2009) Shallowing and steepening subduction zones, continental lithospheric loss, magmatism, and crustal flow under the Central Andean Altiplano-Puna Plateau. Mem Geol Soc Am 204:229–259. https://doi.org/10.1130/2009.1204(11)

    Article  Google Scholar 

  • Kay SM, Coira B, Viramonte J (1994) Young mafic back arc volcanic rocks as indicators of continental lithospheric delamination beneath the Argentine Puna Plateau, central Andes. J Geophys Res Solid Earth 99:24323–24339. https://doi.org/10.1029/94JB00896

    Article  Google Scholar 

  • Kereszturi G, Németh K, Cronin SJ, Procter J, Agustín-Flores J (2014) Influences on the variability of eruption sequences and style transitions in the Auckland Volcanic Field, New Zealand. J Volcanol Geotherm Res 286:101–115. https://doi.org/10.1016/j.jvolgeores.2014.09.002

    Article  Google Scholar 

  • Kereszturi G, Németh K (2012) Monogenetic basaltic volcanoes: genetic classification, growth, geomorphology and degradation. In: Updates in Volcanology - New Advances in Understanding Volcanic Systems Ch 1. https://doi.org/10.5772/51387

  • Koppers AAP, Staudigel H, Wijbrans JR (2000) Dating crystalline groundmass separates of altered Cretaceous seamount basalts by the 40Ar/39Ar incremental heating technique. Chem Geol 166:139–158. https://doi.org/10.1016/S0009-2541(99)00188-6

    Article  Google Scholar 

  • Kraemer B, Adelmann D, Alten M, Schnurr W, Erpenstein K, Kiefer E, van der Bogaard P, Görler K (1999) Incorporation of the Paleogene foreland into the Neogene Puna plateau: the Salar de Antofalla area, NW Argentina. J S Am Earth Sci 12(2):157–182. https://doi.org/10.1016/S0895-9811(99)00012-7

    Article  Google Scholar 

  • Kuiper KF, Deino A, Hilgen FJ, Krijgsman W, Renne PR, Wijbrans JR (2008) Synchronizing rock clocks of earth history. Science 320:500–504. https://doi.org/10.1126/science.1154339

    Article  Google Scholar 

  • Larrea P, Wijbrans JR, Galé C, Ubide T, Lago M, França Z, Widom E (2014) 40Ar/39Ar constraints on the temporal evolution of Graciosa Island, Azores (Portugal). Bull Volcanol 76:796

    Article  Google Scholar 

  • Larrea P, Widom E, Siebe C, Salinas S, Kuentz D (2019) A re-interpretation of the petrogenesis of Paricutin volcano: distinguishing crustal contamination from mantle heterogeneity. Chem Geol 50:66–82. https://doi.org/10.1016/j.chemgeo.2018.10.026

    Article  Google Scholar 

  • Lee JY, Marti K, Severinghaus JP, Kawamura K, Yoo HS, Lee JB, Kim JS (2006) A redetermination of the isotopic abundances of atmospheric Ar. Geochim Cosmochim Acta 70(17):4507–4512. https://doi.org/10.1016/j.gca.2006.06.1563

    Article  Google Scholar 

  • Lucassen F, Kramer W, Bartsch V, Wilke HG, Franz G, Romer RL, Dulski P (2006) Nd, Pb, and Sr isotope composition of juvenile magmatism in the Mesozoic large magmatic province of northern Chile (18–27°S): indications for a uniform subarc mantle. Contrib Mineral Petrol 152:571–589. https://doi.org/10.1007/s00410-006-0119-y

    Article  Google Scholar 

  • Ludwig KR (2012) Users manual for Isoplot/Ex: a geochronological toolkit for Microsoft Excel. Berkeley Geochronol Center Spec Publ No 5:75

    Google Scholar 

  • Magill C, Blong R (2004) Volcanic risk ranking for Auckland, New Zealand. I: Methodology and hazard investigation. Bull Volcanol 67:331–339. https://doi.org/10.1007/s00445-004-0374-6

    Article  Google Scholar 

  • Mamani M, Wörner G, Sempere T (2009) Geochemical variations in igneous rocks of the Central Andean orocline (13 S to 18 S): tracing crustal thickening and magma generation through time and space. Geol Soc Am Bull 122:162–182. https://doi.org/10.1130/B26538.1

    Article  Google Scholar 

  • Maro G, Caffe PJ (2016) The Cerro Bitiche Andesitic Field: petrological diversity and implications for magmatic evolution of mafic volcanic centers from the northern Puna. Bull Volcanol 78:51. https://doi.org/10.1007/s00445-016-1039-y

    Article  Google Scholar 

  • Martin U, Németh K (2006) How Strombolian is a “Strombolian” scoria cone? Some irregularities in scoria cone architecture from the Transmexican Volcanic Belt, near Volcán Ceboruco, (Mexico) and Al Haruj (Libya). J Volcanol Geotherm Res 155(1–2):104–118. j.jvolgeores.2006.02.012

  • Min K, Mundil R, Renne PR, Ludwig KR (2000) A test for systematic errors in 40Ar/39Ar geochronology through comparison with U/Pb analysis of a 1.1-Ga rhyolite. Geochim Cosmochim 64:73–98. https://doi.org/10.1016/S0016-7037(99)00204-5

    Article  Google Scholar 

  • Németh K, Carrasco-Nuñez G, Aranda-Gómez JJ, Smith IEM (2017) Monogenetic volcanism. Geol Soc Lond Spec Publ 446. https://doi.org/10.1144/SP446

  • Németh K, Kereszturi G (2015) Monogenetic volcanism: personal views and discussion. Int J Earth Sci 104:2131–2146. https://doi.org/10.1007/s00531-015-1243-6

    Article  Google Scholar 

  • O’Connor JM, Stoffers P, Wijbrans JR, Worthington TJ (2007) Migration of widespread long-lived volcanism across the Galápagos Volcanic Province: evidence for a broad hotspot melting anomaly? Earth Planet Sci Lett 263:339–354. https://doi.org/10.1016/j.epsl.2007.09.007

    Article  Google Scholar 

  • Parra-Encalada D, Larrea P, Loaiza C, Cartagena R, Salinas S, Godoy B, Grosse P, Le Roux P (2022) Physical and chemical evolution of the largest monogenetic lava field in the Central Andes: El Negrillar Volcanic Field, Chile. J Volcanol Geotherm Res 426. https://doi.org/10.1016/j.jvolgeores.2022.107541

  • Parra-Encalada D, Larrea P, Loaiza C, Cartagena R, Salinas S, Godoy B, Le Roux P (2023) Decoding subcontinental lithosphere processes: The key role of fractional crystallization in Central Andes monogenetic volcanism - Insight from El Negrillar volcanic field. Lithos, Chile. https://doi.org/10.1016/j.lithos.2023.107427

    Book  Google Scholar 

  • Ramírez C, Gardeweg M, Davidson J, Pino H (1991) Mapa geológico del área de los volcanes Socompa y Pular, Región de Antofagasta. Technical report, Servicio Nacional de Geología y Minería, Chile

  • Ramírez CF (1988). The geology of Socompa volcano and its debris avalanche deposit, northern Chile. Ph.D. Thesis, Open University, United Kingdom

  • Reyes-Guzmán N, Siebe C, Chevrel MO, Guilbaud MN, Salinas S, Layer P (2018) Geology and radiometric dating of Quaternary monogenetic volcanism in the western Zacapu lacustrine basin (Michoacán, México): implications for archaeology and future hazard evaluations. Bull Volcanol 80:18. https://doi.org/10.1007/s00445-018-1193-5

    Article  Google Scholar 

  • Risse A, Trumbull RB, Coira B, Kay SM, van den Bogaard P (2008) 40Ar/39Ar geochronology of mafic volcanism in the back-arc region of the southern Puna plateau, Argentina. J S Am Earth Sci 26:1–15. https://doi.org/10.1016/j.jsames.2008.03.002

    Article  Google Scholar 

  • Rissmann C, Leybourne M, Benn C, Christenson B (2015) The origin of solutes within the groundwaters of a high Andean aquifer. Chem Geol 396:164–181. https://doi.org/10.1016/j.chemgeo.2014.11.029

    Article  Google Scholar 

  • Salisbury MJ, Jicha BR, de Silva SL, Singer BS, Jimenez NC, Ort MH (2010) 40Ar/39Ar chronostratigraphy of Altiplano-Puna volcanic complex ignimbrites reveals the development of a major magmatic province. Geol Soc Am Bull 123:821–840. https://doi.org/10.1130/B30280.1

    Article  Google Scholar 

  • Sernageomin (2003) Mapa Geológico de Chile, escala 1:1.000.000, Santiago

  • Siebe C, Macías JL (2006) Volcanic hazards in the Mexico City metropolitan area from eruptions at Popocatépetl, Nevado de Toluca, and Jocotitlán stratovolcanoes and monogenetic scoria cones in the Sierra Chichinautzin Volcanic Field. In: Siebe C, Macías JL, Aguirre G (Eds.), Neogene–Quaternary Continental Margin Volcanism: a perspective from Mexico Geol Soc Am Spec 402:253–329. https://doi.org/10.1130/2004.VHITMC.SP402

  • Smith IEM, Németh K (2017) Source to surface model of monogenetic volcanism: a critical review. Geol Soc Lond Spec Publ 446:1–28. https://doi.org/10.1144/SP446.14

    Article  Google Scholar 

  • Solari M, Venegas C, Montecinos D, Astudillo N, Cortés J, Bahamondes B, Espinoza F (2017) Geología del Área Imilac - Quebrada Guanaqueros, Region de Antofagasta. Escala 1:100.000. Servicio Nacional de Geología y Minería (SERNAGEOMIN), documento de trabajo No.191

  • Stern CR (2004) Active Andean Volcanism: its geologic and tectonic setting. And Geo 31:161–206. https://doi.org/10.4067/S0716-02082004000200001

    Article  Google Scholar 

  • Taussi M, Godoy B, Piscaglia F, Morata D, Agostini S, Le Roux P, González-Maurel O, Gallmeyer G, Menzies A, Renzulli A (2019) The upper crustal magma plumbing system of the Pleistocene Apacheta-Aguilucho Volcanic Complex area (Altiplano-Puna, northern Chile) as inferred from the erupted lavas and their enclaves. J Volcanol Geotherm Res 373:179–198. https://doi.org/10.1016/j.jvolgeores.2019.01.021

    Article  Google Scholar 

  • Thorpe RS, Francis PW (1979) Variations in andean andesite compositions and their petrogenetic significance. Tectonophysics 57:53–70. https://doi.org/10.1016/0040-1951(79)90101-X

    Article  Google Scholar 

  • Tibaldi A, Bonali FL, Corazzato C (2017) Structural control on volcanoes and magma paths from local- to orogen-scale: the Central Andes case. Tectonophysics 699:16–41. https://doi.org/10.1016/j.tecto.2017.01.005

    Article  Google Scholar 

  • Tierney CR, Schmitt AK, Lovera OM, de Silva SL (2016) Voluminous plutonism during volcanic quiescence revealed by thermochemical modeling of zircon. Geology 44:683–686. https://doi.org/10.1130/G37968.1

    Article  Google Scholar 

  • Torres I, Németh K, Ureta G, Aguilera F (2021) Characterization, origin, and evolution of one of the most eroded mafic monogenetic fields within the Central Andes: the case of El País lava flow field, northern Chile. J S Am Earth Sci 105:102942. https://doi.org/10.1016/j.jsames.2020.102942

    Article  Google Scholar 

  • Ureta G, Aguilera F, Néemeth K, Inostroza M, González C, Zimmer M, Menzies A (2020a) Transition from small-volume ephemeral lava emission to explosive hydrovolcanism: the case of Cerro Tujle maar, northern Chile. J S Am Earth Sci 104:102885

    Article  Google Scholar 

  • Ureta G, Németh K, Aguilera F, Zimmer M, Menzies A (2021a) A window on mantle-derived magmas within the Central Andes: eruption style transitions at Cerro Overo maar and La Albondiga lava dome, northern Chile. Bull Volcanol 83:19. https://doi.org/10.1007/s00445-021-01446-3

    Article  Google Scholar 

  • Ureta G, Németh K, Aguilera F, Kósik S, González R, Menzies A, González C, James D (2021b) Evolution of a magmatic to a phreatomagmatic volcanic system: the birth of a monogenetic volcanic field, Tilocálar volcanoes, northern Chile. J Volcanol Geotherm Res 41:107243. https://doi.org/10.1016/j.jvolgeores.2021.107243

    Article  Google Scholar 

  • Ureta G, Németh K, Aguilera F, Vilches M, Aguilera M, Torres I, Sepúlveda JP, Scheinost A, González R (2020b). An overview of the mafic and felsic monogenetic neogene to quaternary volcanism in the Central Andes, Northern Chile (18–28° Lat. S). Volcanoes-Updates in Volcanology 406. Intech Open. https://doi.org/10.5772/intechopen.93959

  • van Alderwerelt B (2017) Diverse monogenetic volcanism across the main arc of the central Andes, northern Chile. Doctoral dissertation, University of Iowa, United States

  • Vilches M, Ureta G, Grosse P, Németh K, Aguilera F, Aguilera M (2022) Effusion rate estimation based on solidified lava flows: implications for volcanic hazard assessment in the Negros de Aras monogenetic volcanic field, northern Chile. J Volcanol Geotherm Res 422. https://doi.org/10.1016/j.jvolgeores.2021.107454

  • Walker GPL (2000) Basaltic volcanoes and volcanic systems. In: Sigurdsson H, Houghton B, McNutt S, Rymer H, Stix J (eds) Encyclopedia of volcanoes, 1st edn. Academic Press, San Diego, pp 283–289

    Google Scholar 

  • Wijbrans JR, Pringle MS, Koppers AAP, Scheveers R (1995) Argon geochronology of small samples using the Vulkaan argon laserprobe. In Proceed Royal Netherlands Acad Arts Sci 98:185–218

    Google Scholar 

  • Wood CA (1980) Morphometric analysis of cinder cone degradation. J Volcanol Geotherm Res 8:137–160. https://doi.org/10.1016/0377-0273(80)90101-8

    Article  Google Scholar 

  • Wörner G, Hammerschmidt K, Henjes-Kunst F, Lezaun J, Wilke H (2000) Geochronology (40Ar/39Ar, K-Ar and He-exposure ages) of Cenozoic magmatic rocks from northern Chile (10–22 S): implications for magmatims and tectonic evolution of the Central Andes. Revista Geológica De Chile 27(2):205–240

    Google Scholar 

  • Wörner G, Schildgen TF, Reich M (2018) The Central Andes: elements of an extreme land. Elements 14:225–230. https://doi.org/10.2138/gselements.14.4.225

    Article  Google Scholar 

  • Yuan X, Sobolev S, Kind R (2002) Moho topography in the central Andes and its geodynamic implications. Earth Planet Sci Lett 199:389–402. https://doi.org/10.1016/S0012-821X(02)00589-7

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to Pablo Grosse and Belén Muñoz, who kindly provided access to the TanDEM-X DEM Deutsches Zentrum für Luftund Raumfahrt (German Aerospace Center DLR) under proposal DEM_GEOL1342 and DEM_GEOL3596, respectively. Special thanks go to Philippe Robidoux, Santiago Maza, Javiera Véliz, Belén Muñoz, Francisca Aguilera, Gustavo Muñoz, Debora Cáceres, and Christian Tobar for their invaluable assistance during the fieldwork campaigns. Finally, the authors extend their appreciation to Shan de Silva for reviewing an early version of the manuscript, to Karoly Németh, and an anonymous reviewer, as well as to the Editors Alexei V. Ivanov and Marie Edmonds, for their valuable comments and suggestions, all of which significantly contributed to the improvement of the original manuscript.

Funding

Financial support for this research was provided by Agencia Nacional de Investigación y Desarrollo de Chile (ANID) through FONDECYT de INICIACIÓN program, Folio 11200293, granted to P. Larrea, as well as through FONDAP projects with Folios 15090013, 15200001 and ACE2100005 (Centro de Excelencia en Geotermia de los Andes, CEGA). P. Larrea also received support from Proyecto de Instalación Académica—FCFM, Universidad de Chile.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Larrea.

Additional information

Editorial responsibility: A. V. Ivanov

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loaiza, C., Larrea, P., Salinas, S. et al. The temporal evolution of monogenetic volcanism in the Central Andes: 40Ar/39Ar geochronology of El Negrillar volcanic field, Chile. Bull Volcanol 86, 1 (2024). https://doi.org/10.1007/s00445-023-01691-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-023-01691-8

Keywords

Navigation