Log in

Bombs behaving badly: unexpected trajectories and cooling of volcanic projectiles

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

We collected thermal infrared video of two explosive eruptions at Stromboli in June 2008 and manually traced the trajectories of 95 particles launched during two eruptions. We found that 10–15 % of the analyzed trajectories deviated from predicted curves due to collisions, causing one particle to travel horizontally more than twice as far as expected. Furthermore, we observed an oscillatory cooling behavior for the airborne pyroclasts, with a median period of 0.46 s. Measured cooling was typically much faster than model-predicted cooling with discrepancies of up to 40 % between measured cooling and theoretical modeling. We interpret the measured cooling curves as resulting from the spinning and twisting and tearing of particles during travel: the periodic re-exposing of the hotter core of the pyroclasts to the atmosphere may cause the observed oscillations, and the spinning may accelerate cooling by enhancing convective heat transfer. Current volcanic trajectory and cooling models do not account for projectile collisions, spinning, or tearing and can thus severely underestimate the maximum landing distance and cooling rates of large pyroclasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alatorre-Ibargüengoitia MA, Delgado-Granados H, Ferraz-Montes IA (2006) Hazard zoning for ballistic impact during volcanic explosions at Volcán de Fuego de Colima (México). In: Siebe C et al. (eds) Neogene-quaternary continental margin volcanism: a perspective from México. Geol Soc Am Spec Pap 402. GSA, Boulder, CO, pp 209-216, doi:10.1130/2006.2402(09)

  • Alatorre-Ibargüengoitia MA, Scheu B, Dingwell DB, Delgado-Granados H, Taddeucci J (2010) Energy consumption by magmatic fragmentation and pyroclast ejection during Vulcanian eruptions. Earth Planet Sci Lett 209:60–69. doi:10.1016/j.epsl.2009.12.051

    Article  Google Scholar 

  • Army Military Command (1963) Trajectories, differential effects, and data for projectiles. Army Materiel Command Engineering Design Handbook Ser, Pamphlet 706-140

  • Barberi F, Rosi M, Sodi A (1993) Volcanic hazard assessment at Stromboli based on review of historical data. Acta Vulcanologica 3:173–187

    Google Scholar 

  • Belidor BF de (1731) Le bombardier françois, ou, nouvelle méthode pour jeter des bombes avec precision., Imprimerie Royale, Paris

  • Bertolaso G, De Bernardinis B, Bosi V, Cardaci C, Ciolli S, Colozza R, Cristiani C, Mangione D, Ricciardi A, Rosi M, Scalzo A, Soddu P (2009) Civil protection preparedness and response to the 2007 eruptive crisis of Stromboli Volcano, Italy. J Volcanol Geotherm Res 182:269–277. doi:10.1016/j.jvolgeores.2009.01.022

    Article  Google Scholar 

  • Bliss GA (1919) A method of computing differential corrections for a trajectory. J United States Artil 51:445–449

    Google Scholar 

  • Blondel N-F (1683) L’art de jetter les bombes. F. le Cointe, Paris

  • Blong RJ (1984) Volcanic hazards. Academic, Orlando

    Google Scholar 

  • Bower SM, Woods AW (1996) On the dispersal of clasts from volcanic craters during small explosive eruptions. J Volcanol Geotherm Res 73:19–32

    Article  Google Scholar 

  • Capaccioni B, Cuccoli F (2005) Spatter and welded air fall deposits generated by fire-fountaining eruptions: cooling of pyroclasts during transport and deposition. J Volcanol Geotherm Res 145:263–280

    Article  Google Scholar 

  • Cas RAF, Wright JV (1987) Volcanic successions—modern and ancient. Allen and Unwin, London

    Book  Google Scholar 

  • Chouet B, Hamisevicz N, McGetchin TR (1974) Photoballistics of volcanic jet activity at Stromboli, Italy. J Geophys Res 79(32):4961–4976. doi:10.1029/JB079i032p04961

    Article  Google Scholar 

  • De Mestre N (1990) The mathematics of projectiles in sport. Austral Math Soc Lecture Ser 6. Cambridge University Press, Cambridge

    Google Scholar 

  • de’ Michieli Vitturi M, Neri A, Esposti Ongaro T, Lo Savio S, Boschi E (2010) Lagrangian modeling of large volcanic particles: applications to Vulcanian explosions. J Geophys Res 115(B08206), doi:10.1029/2009JB007111

  • Euler LP (1753) Recherches sur la veritable courbe que décrivent les corps jettés dans l’air ou dans un autre fluide quelconque. Mémoire de l’Académie des Sciences de Berlin 9, Opera II-14: 321-352

    Google Scholar 

  • Fagents SA, Wilson L (1993) Explosive volcanic eruptions—VII. The ranges of pyroclasts ejected in transient volcanic explosions. Geophys J Internat 113:359–370

    Article  Google Scholar 

  • Federal Aviation Administration (1990) Waivers: aviation events. Advisory Circular 91-45 C

  • Formenti Y, Druitt TH, Kelfoun K (2003) Characterisation of the 1997 Vulcanian explosion of Soufrière Hills Volcano, Montserrat, by video analysis. Bull Volcanol 65(8):587–605. doi:10.1007/s00445-003-0288-8

    Article  Google Scholar 

  • Galileo G (1638) Discorsi e dimostrazioni matematiche, intorno a due nuove scienze (Discourses and mathematical demonstrations relating to two new sciences). Louis Elsevier, Leiden

    Google Scholar 

  • Griffiths I, Evans C, Griffiths N (2005) Tracking the flight of a spinning football in three dimensions. Measur Sci Tech 16:2056–2065

    Article  Google Scholar 

  • Harris AJL, Ripepe M (2007) Synergy of multiple geophysical approaches to unravel explosive eruption conduit and source dynamics—a case study from Stromboli. Chemie der Erde 67:1–35

    Article  Google Scholar 

  • Harris AJL, Stevenson DS (1997) Thermal observations of degassing open conduits and fumaroles at Stromboli and Vulcano using remotely sensed data. J Volcanol Geotherm Res 76:175–198

    Article  Google Scholar 

  • Harris AJL, Ripepe M, Hughes EA (2012a) Detailed analysis of particle launch velocities, size distributions and gas densities during normal explosions at Stromboli. J Volcanol Geotherm Res. doi:10.1016/j.jvolgeores.2012.02.012

  • Harris AJL, Gurioli L, Colò L, Bernard J, Favalli M, Ripepe M, Andronico D (2012b) Classification, landing distribution and associated flight parameters for a bomb field emplaced during a single major explosion at Stromboli. Geology (in press).

  • Imbò G (1928) Parossismo di Stromboli nel settembre 1930. Bull Volcanol 1(15–18):177–185

    Article  Google Scholar 

  • Kilgour G, Manville V, Della Pasqua F, Graettinger A, Hodgson KA, Jolly GE (2010) The 25 September 2007 eruption of Mount Ruapehu, New Zealand: directed ballistics, sutseyan jets, and ice-slurry lahars. J Volcanol Geotherm Res 191:1–14

    Article  Google Scholar 

  • Lorenz V (1970) Some aspects of the eruption mechanism of the Big Hole Maar, Central Oregon. Geol Soc Amer 81:1823–1830

    Article  Google Scholar 

  • Macdonald GA (1972) Volcanoes. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Mastin LG (2001) A simple calculator of ballistic trajectories for blocks ejected during volcanic eruptions. U.S. Geol Survey Open-File Report 01-45, U.S. Geological Survey.

  • Mehta RD (1985) Aerodynamics of sports balls. Annual Rev Fluid Mechan 17:151–189

    Article  Google Scholar 

  • Mercalli G (1907) Vulcani attivi della Terra. U. Hoepli, Milan

    Google Scholar 

  • Oldham HE (1990) Aircraft debris trajectory analysis. Proairshow LLC Report, Anderson, South Carolina

    Google Scholar 

  • Patrick MR, Harris AJL, Ripepe M, Dehn J, Rothery DA, Calvari S (2007) Strombolian explosive styles and source conditions: insights from thermal (FLIR) video. Bull Volcanol 69(7):769–784. doi:10.1007/s00445-006-0107-0

    Article  Google Scholar 

  • Ripepe M, Rossi M, Saccorotti G (1993) Image processing of explosive activity at Stromboli. J Volcanol Geotherm Res 54:335–351

    Article  Google Scholar 

  • Ripepe M, Ciliberto S, Della Schiava M (2001) Time constraints for modeling source dynamics of volcanic explosions at Stromboli. J Geophys Res 106(B5):8713–8727

    Article  Google Scholar 

  • Robins B (1742) New principles of gunnery. J. Nourse, London

  • Rosi M, Bertagnini A, Harris AJL, Pioli L, Pistolesi M, Ripepe M (2006) A case history of paroxysmal explosion at Stromboli: timing and dynamics of the April 5, 2003 event. Earth Planet Sci Lett 243(3–4):594–606

    Article  Google Scholar 

  • Saunderson HC (2008) Equations of motion and ballistic paths of volcanic ejecta. Comput Geosci 34:802–814

    Article  Google Scholar 

  • Self S, Kienle J, Huot J (1980) Ukinrek Maars, Alaska, II. Deposits and formation of the 1977 crater. J Volcanol Geotherm Res 7(1-2):39–65. doi:10.1016/0377-0273(80)90019-0

    Article  Google Scholar 

  • Sherwood AE (1967) Effect of air drag on particles ejected during explosive cratering. J Geophys Res 72(6):1783–1791. doi:10.1029/JZ072i006p01783

    Article  Google Scholar 

  • Shoub H, Bender EW (1964) Radiant ignition of wall finish materials in a small home. NBS 8172, U.S. National Bureau of Standards, Washington

  • Steinberg GS, Lorenz V (1983) External ballistics of volcanic explosions. Bull Volcanol 46(4):333–348

    Article  Google Scholar 

  • Thomas RME, Sparks RSJ (1992) Cooling of tephra during fallout from eruption columns. Bull Volcanol 54(7):542–553

    Article  Google Scholar 

  • Urbanski N-A, Voge M, Seyfried R, Rupke L, Petersen T, Hanebuth T, Hort M (2002) Fifteen days of continuous activity survey at Stromboli volcano, Italy, in late September 2000: Doppler radar, seismicity, infrared, soil humidity, and map** of the crater region. Int J Earth Sci 91:712–721

    Article  Google Scholar 

  • Waitt RB, Mastin LG, Miller TP (1995) Ballistic showers during Crater Peak eruptions of Mount Spurr Volcano, summer 1992. The 1992 of Crater Peak Vent, Mount Spurr Volcano, Alaska, US Geol Surv Bull 2139

  • Wilson L (1972) Explosive volcanic eruptions—II: the atmospheric trajectories of pyroclasts. Geophys J Roy Astro Soc 30:381–392

    Article  Google Scholar 

  • Wright HMN, Cashman KV, Rosi M, Cioni R (2007) Breadcrust bombs as indicators of Vulcanian eruption dynamics at Guagua Pichincha volcano, Ecuador. Bull Volcanol 69:281–300

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge J. Dehn, L. Colò, T. Lopez, and K. Horton for their help in the field. M. May processed the June 3, 2008 explosion trajectories. We thank the associate editor and two anonymous reviewers for their comments, which greatly improved the manuscript, and H. Wright, M. Alatorre and M. James for their review of an earlier version of the article. This is SOEST contribution 8674 and HIGP 1933. This work was funded by the US National Science Foundation grant EAR07-38106. AH was supported by la Région Auvergne.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loÿc Vanderkluysen.

Additional information

Editorial responsibility: V. Manville

Electronic supplementary material

Below is the link to the electronic supplementary material.

Thermal video sequence of an explosive eruption at Stromboli volcano viewed from Portella di Ginostra on June 3 at 11:11:02 UTC. Frame rate, 6 Hz. (AVI 8970 kb)

Thermal video sequence of an explosive eruption at Stromboli Volcano viewed from Portella di Ginostra on June 5 at 13:10:59 UTC. Frame rate, 6 Hz. (AVI 10245 kb)

Thermal video sequence of an explosive eruption at Stromboli Volcano viewed from the Pizzo sopra la Fossa on June 5 at 13:10:59 UTC. Frame rate, 10 Hz. (AVI 21781 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vanderkluysen, L., Harris, A.J.L., Kelfoun, K. et al. Bombs behaving badly: unexpected trajectories and cooling of volcanic projectiles. Bull Volcanol 74, 1849–1858 (2012). https://doi.org/10.1007/s00445-012-0635-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00445-012-0635-8

Keywords

Navigation