Log in

Breeding stage and tissue isotopic consistency suggests colony-level flexibility in niche breadth of an Arctic marine bird

  • Global change ecology – original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Organisms must overcome environmental limitations to optimize their investment in life history stages to maximize fitness. Human-induced climate change is generating increasingly variable environmental conditions, impacting the demography of prey items and, therefore, the ability of consumers to successfully access resources to fuel reproduction. While climate change effects are especially pronounced in the Arctic, it is unknown whether organisms can adjust foraging decisions to match such changes. We used a 9-year blood plasma δ13C and δ15N data set from over 700 pre-breeding Arctic common eiders (Somateria mollissima) to assess breeding-stage and inter-annual variation in isotopic niche, and whether inferred trophic flexibility was related to colony-level breeding parameters and environmental variation. Eider blood isotope values varied both across years and breeding stages, and combined with only weak relationships between isotopic metrics and environmental conditions suggests that pre-breeding eiders can make flexible foraging decisions to overcome constraints imposed by local abiotic conditions. From an investment perspective, an inshore, smaller isotopic niche predicted a greater probability to invest in reproduction, but was not related to laying phenology. Proximately, our results provide evidence that eiders breeding in the Arctic can alter their diet at the onset of reproductive investment to overcome increases in the energetic demand of egg production. Ultimately, Arctic pre-breeding common eiders may have the stage- and year-related foraging flexibility to respond to abiotic variation to reproduce successfully.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alatalo RV (1982) Evidence of interspecific competition among European tit spp.: a review. Ann Zool Fenn 19:309–317

    Google Scholar 

  • Bearhop S, Adansm CE, Waldron S, Fuller RA, MacLeod H (2004) Determining trophic niche width: a novel approach using stable isotope analysis. J Anim Ecol 73:1007–1012

    Article  Google Scholar 

  • Becker BH, Zachariah Peery M, Beissinger SR (2007) Ocean climate and prey availability affect the trophic level and reproductive success of the marbled murrelet, an endangered seabird. Mar Ecol Prog Ser 329:267–279

    Article  CAS  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  • Boecklen WJ, Yarnes CT, Cook BC, James AC (2011) On the use of stable isotopes in trophic ecology. Annu Rev Ecol Evol Syst 42:411–440

    Article  Google Scholar 

  • Boggs CL (1992) Resource allocation: Exploring connections between foraging and life history. Funct Ecol 6(5):508–518

    Article  Google Scholar 

  • Bolnick DI, Svanbäck R, Fordyce JA, Yang LH, Davis JM, Hulsey CD, Forister ML (2003) The ecology of individuals: incidence and implications of individual specialization. Am Nat 161:1–28

    Article  PubMed  Google Scholar 

  • Both C, Bouwhuis S, Lessells CM, Visser ME (2006) Climate change and population declines in a long-distance migratory bird. Nature 441:81–83

    Article  CAS  PubMed  Google Scholar 

  • Bottitta GE, Nol E, Gilchrist HG (2003) Effects or experimental manipulation of incubation length on behaviour and body mass of common eiders in the Canadian Arctic. Waterbirds 26:100–107

    Article  Google Scholar 

  • Chesson PL (1986) Environmental variation and the coexistence of species. In: Diamond J, Case TJ (eds) Community Ecology. Harper and Row, New York

    Google Scholar 

  • Comiso JC, Parkinson CL, Gersten R, Stock L (2008) Accelerated decline in the Arctic sea ice cover. Geophys Res Lett 35:1–6

    Article  Google Scholar 

  • Cushing DH (1990) Plankton production and year-class strength in fish populations: an update of the match/mis-match hypothesis. Adv Mar Biol 26:249–293

    Article  Google Scholar 

  • Deforges J, Outridge P, Hobson KA, Heide-Jørgensen MP (2021) Anthropogenic and climatic drivers of long-term changes of mercury and feeding ecology in Arctic Beluga (Delphinapterus leucas) populations. Environ Sci Technol 56(1):271–281

    Article  Google Scholar 

  • Descamps S, Yoccoz NG, Gaillard J, Gilchrist HG, Erikstad KE, Hanssen SA, Cazelles B, Forbes MR, Bêty J (2010) Detecting population heterogeneity in effects of North Atlantic oscillations on seabird body condition: get into the rhythm. Oikos 119:1526–1536

    Article  Google Scholar 

  • Descamps S, Bêty J, Love OP, Gilchrist HG (2011a) Individual optimization of reproduction in a long-lived migratory bird: a test of the condition-dependent model of laying date and clutch size. Funct Ecol 25:671–681

    Article  Google Scholar 

  • Descamps S, Forbes MR, Gilchrist HG, Love OP, Bêty J (2011b) Avian cholera, post-hatching survival and selection on hatch characteristics in a long-lived bird. J Avian Biol 42:39–48

    Article  Google Scholar 

  • Descamps S, Aars J, Fuglei E, Kovacs KM, Lydersen C, Pavlova O, Pedersen ÅØ, Ravolainen V, Strøm H (2017) Climate change impacts on wildlife in a high Arctic archipelago – Svalbard, Norway. Glob Change Biol 23:490–502

    Article  Google Scholar 

  • Forero MG, Hobson KA, Bortolotti GR, Donázar JA, Bertellotti M, Blanco G (2002) Food resource utilisation by the Magellanic penguin evaluated through stable isotope analysis: segregation by sex and age and influence on offspring quality. Mar Ecol Prog Ser 234:289–299

    Article  Google Scholar 

  • González-Medina E, Castillo-Guerrero JA, Herzka SZ, Fernández G (2018) High quality diet improves lipid metabolic profile and breeding performance in the blue-footed booby, a long-lived seabird. PLoS One 13(2):e0193136

    Article  PubMed  PubMed Central  Google Scholar 

  • Guéry L, Descamps S, Pradel R, Hanssen SA, Erikstad KE, Gabrielsen GW, Gilchrist HG, Bëty J (2017) Hidden survival heterogenity of three common eider populations in response to climate fluctuations. J Anim Ecol 86:683–693

    Article  PubMed  Google Scholar 

  • Guéry L, Descamps S, Hodges KI, Pradel R, Moe B, Hanssen SA, Erikstad KE, Gabrielsen GW, Giilchrist HG, Jenourvier S, Bêty J (2019) Winter extratropical cyclone influence on seabird survival: variaiation between and within common eider populations. Mar Ecol Prog Ser 627:155–170

    Article  Google Scholar 

  • Hahn S, Hoye BJ, Korthals H, Klaassen M (2012) From food to offspring down: tissue specific discrimination and turn-over of stable isotopes in herbivorous waterbirds and other avian foraging guilds. PLoS One 7:1–6

    Google Scholar 

  • Hallett TB, Coulson T, Pilkington JG, Clutton-Brock TH, Pemberton JM, Grenfell BT (2004) Why large-scale climate indices seem to predict ecological processes better than local weather. Nature 430:71–75

    Article  CAS  PubMed  Google Scholar 

  • Hennin HL, Legagneux P, Bêty J, Williams TD, Gilchrist HG, Baker TM, Love OP (2015) Pre-breeding energetic management in a mixed-strategy breeder. Oecologia 177:235–243

    Article  PubMed  Google Scholar 

  • Hennin HL, Bêty J, Legagneaux P, Gilchrist HG, Williams TD, Love OP (2016a) Energetic physiology mediates individual optimization of breeding phenology in a migratory arctic seabird. Am Nat 188:434–445

    Article  PubMed  Google Scholar 

  • Hennin HL, Wells-Berlin AM, Love OP (2016b) Baseline glucocorticoids are drivers of body mass gain in a diving seabird. Ecol Evol 6:1702–1711

    Article  PubMed  PubMed Central  Google Scholar 

  • Hennin HL, Dey CJ, Bêty J, Gilchrist HG, Legagneux P, Williams TD, Love OP (2018) Higher rates of prebreeding condition gain positively impact clutch size: a mechanistic test of the condition-dependent individual optimization model. Funct Ecol 32:2019–2028

    Article  Google Scholar 

  • Hennin HL, Legagneux P, Gilchrist HG, Bêty J, McMurty JP, Love OP (2019) Plasma mammalian leptin analogue predicts reproductive phenology, but not reproductive output in a capital-income breeding seaduck. Ecol Evol 9:1512–1522

    Article  PubMed  PubMed Central  Google Scholar 

  • Herman RW, Valls FCL, Hart T, Petry MV, Trivelpiece WZ, Polito MJ (2017) Seasonal consistency and individual variation in foraging strategies differ among and within Pygoscelis penguin species in the Antarctic peninsula region. Mar Biol 164:115

    Article  Google Scholar 

  • Hobson KA (1999) Tracing origins and migration of wildlife using stable isotopes: a review. Oecologia 120:314–326

    Article  PubMed  Google Scholar 

  • Hobson KA (2006) Using stable isotopes to quantitatively track endogenous and exogenous nutrient allocations to eggs of birds that travel to breed. Ardea 94(3):359–369

    Google Scholar 

  • Hobson KA, Clark RG (1992a) Assessing avian diets using stable isotopes I: turnover of δ13C in tissues. Condor 94:181–188

    Article  Google Scholar 

  • Hobson KA, Clark RG (1992b) Assessing avian diets using stable isotopes II: factors influencing diet-tissue fractionation. The Condor 94:189–197

    Article  Google Scholar 

  • Hobson KA, Clark RG (1993) Turnover of δ13C in cellular and plasma fractions of blood: implications for non-destructive sampling in avian dietary studies. Auk 110:638–641

    Article  Google Scholar 

  • Hobson KA, Alisauskas RT, Clark RG (1993) Stable-Nitrogen isotope enrichment in avian tissues due to fasting and nutritional stress: implications for isotopic analyses of diet. Condor 95:388–394

    Article  Google Scholar 

  • Hobson KA, Jaatinen K, Öst M (2015) Differential contributions of endogenous and exogenous nutrients to egg components in wild Baltic common eiders (Somatria mollissima): a test of alternative stable isotope approaches. Auk 132(2):624–633

    Article  Google Scholar 

  • Hoegh-Guldberg O, Bruno JF (2010) The impact of climate change on the worlds marine ecosystems. Science 328:1523–1528

    Article  CAS  PubMed  Google Scholar 

  • Hutchinson GE (1957) Concluding remarks: cold spring harbor symposium. Quant Biol 22:415–427

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change (2018) Global warming of 1.5° C, an IPCC special report on the impacts of global warming of 1.5° C above pre‐industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. IPCC, Geneva

  • Jackson AL, Inger R, Parnell AC, Bearhop S (2011) Comparing isotopic niche widths among and within communities: SIBER–stable isotope bayesian ellipses in R. J Anim Ecol 80:595–602

    Article  PubMed  Google Scholar 

  • Jean-Gagnon F, Legagneux P, Gilchrist G, Bélanger S, Love OP, Bêty J (2018) The impact of sea ice conditions on breeding decisions is modulated by body condition in an Arctic partial capital breeder. Oecologia 186:1–10

    Article  PubMed  Google Scholar 

  • Johannessen OM, Bengtsson L, Miles MW, Kuzmina SI, Semenov VA, Alekseev GH, Nagurnyi AP, Zakharov VF, Bobylev LP, Pettersson LH, Hasselmann K, Cattle HP (2004) Arctic climate change: observed and modelled temperature and sea-ice variability. Tellus 56:328–341

    Article  Google Scholar 

  • Jones DO, Yool A, Wei C, Henson SA, Ruhl HA, Watson RA, Gehlen M (2014) Global reductions in seafloor biomass in response to climate change. Glob Change Biol 20:1861–1872

    Article  Google Scholar 

  • Kitaysky AS, Piatt JF, Hatch SA, Kitaiskaia EV, Benowitz-Fredericks ZM, Shultz MT, Wingfield JC (2010) Food availablity and population processes: severity of nutritional stress during reproduction predicts survivial of long-lived seabirds. Funct Ecol 24:625–637

    Article  Google Scholar 

  • Kovacs KM, Lydersen C, Overland JE, Moore SE (2011) Impacts of changing sea-ice conditions on Arctic marine mammals. Mar Biodivers 41:181–194

    Article  Google Scholar 

  • Legagneux P, Hennin HL, Gilchrist HG, Williams TD, Love OP, Bêty J (2016) Unpredictable perturbation reduces breeding propensity regardless of prey-laying reproductive readiness in a partial capital breeder. J Avian Biol 47:880–886

    Article  Google Scholar 

  • Leibold MA (1996) The niche concept revisited: mechanistic models and community context. Ecology 76(5):1371–1382

    Article  Google Scholar 

  • Lepage D, Gauthier G, Menu S (2000) Reproductive consequences of egg-laying decisions in snow geese. J Anim Ecol 69:414–427

    Article  Google Scholar 

  • Love OP, Gilchrist HG, Descamps S, Semeniuk CAD, Bêty J (2010) Pre-laying climate cues can time reproduction to optimally match offspring hatching and ice conditions in an Arctic marine bird. Oecologia 164:277–286

    Article  PubMed  Google Scholar 

  • Mancinelli G, Vizzini S (2015) Assessing anthroprogenic pressures on coastal marine ecosystems using stable CNS isotopes: State of the art, knowledge gaps, and community-scale perspetives. Esturine Coast Shelf Sci 156:195–204

    Article  CAS  Google Scholar 

  • Matich P, Shipley ON, Weideli OC (2021) Quantifying spatial variation in isotopic baselines resveals size-based feeding in a model esturine predator: implications for trophic studies in dynamic ecotones. Mar Biol 168:108–120

    Article  CAS  Google Scholar 

  • McNamara JM, Houston AI (1996) State-dependent life histories. Nature 380:215–221

    Article  CAS  PubMed  Google Scholar 

  • Meier WN, Hovelsrud GK, van Oort BEH, Key JR, Kovacs KM, Michel C, Haas C, Granskog MA, Gerland S, Perovich DK, Makshtas A, Reist JD (2014a) Arctic sea ice in transformation: a review of recent observed changes and impacts on biology and human activity. Rev Geophys 51:185–217

    Article  Google Scholar 

  • Meier WN, Hovelsrud GK, van Oort BEH, Key JR, Kovacs KM, Michel C, Haas C, Granskog MA, Gerland S, Perovich DK, Makshtas A, Reist JD (2014b) Arctic sea ice transformation: a review of recent observed changes and impacts on biology and human activity. Rev Geophys 51:185–217

    Article  Google Scholar 

  • Moreno R, Jover L, Munilla I, Velando A, Sanpera C (2010) A three-isotope approach to disentangling the diet of a generalist consumer: the yellow-legged gull in northwest Spain. Mar Biol 157:545–553

    Article  Google Scholar 

  • Mosbech A, Gilchrist HG, Merkel F, Sonne C, Flagstad A, Nyegaard H (2006) Year round movements of northern common eiders Somateria mollissima borealis breeding in Arctic Canada and West Greenland followed by satellite telemetry. Ardea 94:651–665

    Google Scholar 

  • Muggeo VMR (2003) Estimating regression models with unknown break-points. Stat Med 22:3055–3071

    Article  PubMed  Google Scholar 

  • Newsome SD, Marinez del Rio C, Bearhop S, Phillips DL (2007) A niche for isotopic ecology. Front Ecol Environ 5:429–436

    Article  Google Scholar 

  • Newton I (1998) Population limitation in birds. Academic Press, London

    Google Scholar 

  • Paiva VH, Geraldes P, Marques V, Rodríguez R, Garthe S, Ramos JA (2013) Effects of environmental variability on different trophic levels of the North Atlantic food web. Mar Ecol Prog Ser 477:15–28

    Article  Google Scholar 

  • Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Ann Rev Ecol Syst 18:293–320

    Article  Google Scholar 

  • Pethybridge H, Choy CA, Logan JM, Allain V, Lorrain A, Bodin N, Somes CJ, Young J, Ménard F, Langlais C, Duffy L, Hobday AJ, Kuhnert P, Fry B, Menkes C, Olson RJ (2017) A global meta-analysis of marine predator nitrogen stable isotopes: relationships between trophic structure and environmental conditions. Glob Ecol Biogeogr 27:1043–1055

    Article  Google Scholar 

  • Polito MJ, Trivelpiece WZ, Patterson WP, Karnovsky NJ, Reiss CS, Emslie SD (2015) Contrasting specialist and generalist patterns facilitate foraging niche partitioning in sympatric populations of Pygoscelis penguins. Mar Ecol Prog Ser 519:221–237

    Article  CAS  Google Scholar 

  • R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Reusch TBH, Chapman ARO (1995) Strom effects on eelgrass (Zostera marina L.) and blue mussel (Mytilus edulis L.) beds. J Exp Mar Biol Ecol 192:257–271

    Article  Google Scholar 

  • Romero LM, Reed JM (2005) Collecting baseline corticosterone samples in the field: is under 3 min good enough? Comp Biochem Physiol 140:73–79

    Article  Google Scholar 

  • Rutschmann A, Miles DB, Le Galliard J-F, Richard M, Moulherat S, Sinervo B, Clobert J (2016) Climate and habitat interact to shape the thermal reaction norms of breeding phenology across lizard populations. J Anim Ecol 85:457–466

    Article  PubMed  Google Scholar 

  • Seamon JO, Adler GH (1996) Population performance of generalist and specialist rodents along habitat gradients. Can J Zool 74:1130–1139

    Article  Google Scholar 

  • Sénéchal É, Bêty J, Gilchrist HG, Hobson KA, Jamieson SE (2011) Do purely capital layers exist among flying birds? Evidence of exogenous contribution to arctic-nesting common eider eggs. Oecologia 165:593–604

    Article  PubMed  Google Scholar 

  • Seyboth E, Groch KR, Rosa LD, Reid K, Flores PAC, Secchi ER (2016) Southern right whale (Eubalaena australis) reproductive success is influenced by krill (Euphausia superba) density and climate. Nature 6:1–8

    Google Scholar 

  • Steenweg RJ, Crossin GT, Kyser TK, Merkel FR, Gilchrist HG, Hennin HL, Robertson GJ, Provencher JF, Flemming JM, Love OP (2017) Stable isotopes can be used to infer the overwintering locations of prebreeding marine birds in the Canadian Arctic. Ecol Evol 7(21):8742–8752

    Article  PubMed  PubMed Central  Google Scholar 

  • Stenseth NC, Ottersen G, Hurrell JW, Mysterud A, Lima M, Chan KS, Yoccoz NG, Ådlandsvik B (2003) Studying climate effects on ecology through the use of climate indices: the North Atlantic Oscillation, El Niño Southern Oscillation and beyond. Proc R Soc Lond 270:2087–2096

    Article  Google Scholar 

  • Stephens WD, Krebs RJ (1986) Foraging theory. Princeton University Press, Princeton (NJ)

    Google Scholar 

  • Tylianakis JM, Didham RK, Bascompte J, Wardle DA (2008) Global change and species interactions in terrestrial esosystems. Ecol Lett 11:1351–1363

    Article  PubMed  Google Scholar 

  • Vanderklift MA, Ponsard S (2003) Sources of variation in consumer-diet δ15N enrichment: a meta-analysis. Oecologia 136:169–182

    Article  PubMed  Google Scholar 

  • Vandermeer JH (1972) Niche theory. Ann Rev Ecol Syst 3:107–132

    Article  Google Scholar 

  • Vézina F, Salvante KG (2010) Behavioural and physiological flexibility are used by birds to manage energy and support investment in the early stages of reproduction. Curr Zool 56:767–792

    Article  Google Scholar 

  • Vézina F, Williams TD (2003) Plasticity in body condition in breeding birds: what drives the metabolic cost of egg production? Physiol Biochem Zool 76:716–730

    Article  PubMed  Google Scholar 

  • Walther G, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin J-M, Hoegh-Guldberg O, Bairlen F (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  CAS  PubMed  Google Scholar 

  • Ward EJ, Holmes EE, Balcomb KC (2009) Quantifying the effects of prey abundance on killer whale reproduction. Can J Fish Aquat Sci 46:632–640

    Google Scholar 

  • Wassmann P, Duarte CM, Agusti S, Sejr MK (2011) Footprints of climate change in the Arctic marine ecosystem. Glob Change Biol 17:1235–1249

    Article  Google Scholar 

  • Whiteman J, Newsome S, Bustamante P, Cherel Y, Hobson KA (2020) Quantifying capital vs income breeding: new promise with stable isotope measurements of individual amino acids. J Anim Ecol 2020(00):1–11

    Google Scholar 

  • Williams TD (2012a) Chapter 2: The hormonal and physiological control of egg production Physiological adaptations for breeding birds. Princeton University Press, Princeton, pp 8–51

    Book  Google Scholar 

  • Williams TD (2012b) Physiological adaptations for breeding birds. Princton Uniiversity Press, Princeton, New Jersey, USA

    Book  Google Scholar 

  • Yukowski DJ, Richardson ES, Lunn NJ, Muir DCG, Johnson AC, Derocher AE, Ehrman AD, Houde M, Young BG, Debets CD, Sciullo L, Thiemann AD, Ferguson SH (2020) Contrasting temporal patterns of mercury, niche dynamics, and body fat indices of polar bears and ringed seals in a melting icescape. Environ Sci Technol 54(5):2780–2789

    Article  Google Scholar 

  • Zhang S, Ma Z, Choi C, Peng H, Melville DS, Zhao T, Bai Q, Liu W, Chan Y, van Gils JA, Piersma T (2019) Morphological and digestive adjustments buffer performance: how staging shorebirds cope with severe food declines. Ecol Evol 9(7):3868–3878

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the 2010–2018 East Bay Island field crews for data collection, and I. Butler and R. Kelly for data management. We also thank the Natural Sciences and Engineering Research Council of Canada, Environment and Climate Change Canada, Canada Research Chairs Program, Northern Scientific Training Program, the Nunavut Wildlife Management Board, Polar Knowledge Canada, the Polar Continental Shelf Program, Oceans North, and the ArcticNet Canadian Network of Centres of Excellence for financial support. Animal care approval for this project was granted through both the University of Windsor Committee for Animal Care (AUPP #11-06 and #19-06; Reproductive Strategies of Arctic-Breeding Common Eiders) and ECCC Animal Care (EC-PN-15-026).

Author information

Authors and Affiliations

Authors

Contributions

KJLP, HLH, HGG, and OPL: conceived the research ideas and collected the data. KJLP, KAH, and NEH: prepared and analyzed the samples. KJLP, HLH, KAH, and OPL: analyzed the data. KJLP, HLH, and OPL: wrote the manuscript. All authors contributed to editing the manuscript. HGG and OPL: provided funding for the research.

Corresponding author

Correspondence to Kyle J. L. Parkinson.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Communicated by Christian Voigt.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 578 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parkinson, K.J.L., Hennin, H.L., Gilchrist, H.G. et al. Breeding stage and tissue isotopic consistency suggests colony-level flexibility in niche breadth of an Arctic marine bird. Oecologia 200, 503–514 (2022). https://doi.org/10.1007/s00442-022-05267-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-022-05267-9

Keywords

Navigation