Log in

Some like it hotter: trematode transmission under changing temperature conditions

  • Global change ecology – original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Climate change-related increases in temperature will influence the interactions between organisms, including the infection dynamics of parasites in ecosystems. The distribution and transmission of parasites are expected to increase with warmer temperature, but to what extent this will affect closely related parasite taxa living in sympatry is currently impossible to predict, due to our extremely limited understanding of the interspecific variation in transmission potential among parasite species in changing ecosystems. Here, we analyse the transmission patterns of four trematode species from the New Zealand mudsnail Potamopyrgus antipodarum with different life cycles and transmission strategies under two temperature scenarios, simulating current and future warmer temperatures. In a comparative experimental study, we investigated the effects of temperature on the productivity, movement and survival of the parasites’ transmission stages (cercariae) to quantify the net effect of temperature on their overall transmission potential. Our results show that increases in temperature positively affect cercarial transmission dynamics, yet these impacts varied considerably between the cercariae of different trematode species, depending on their host-searching behaviour. These different species-specific transmission abilities as well as the varying individual patterns of productivity, activity and longevity are likely to have far-reaching implications for disease dynamics in changing ecosystems, since increases in temperature can shift parasite community structure. Due to the parasites’ capacity to regulate the functioning of whole ecological communities and their potential impact as disease agents, understanding these species-specific parasite transmission traits remains a fundamental requirement to predict parasite dynamics under changing environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altizer S, Ostfeld RS, Johnson PTJ, Kutz S, Harvell CD (2013) Climate change and infectious diseases: from evidence to a predictive framework. Science 341:514–519

    CAS  PubMed  Google Scholar 

  • Altman KA, Paull SH, Johnson PTJ, Golembieski MN, Stephens JP, Lafonte BE, Raffel TR (2016) Host and parasite thermal acclimation responses depend on the stage of infection. J Anim Ecol 85:1014–1024

    PubMed  Google Scholar 

  • Araújo MB, Luoto M (2007) The importance of biotic interactions for modelling species distributions under climate change. Global Ecol Biogeogr 16:743–753

    Google Scholar 

  • Combes C, Fournier A, Moné H, Théron A (1994) Behaviours in trematode cercariae that enhance parasite transmission: patterns and processes. Parasitology 109:3–13

    Google Scholar 

  • Coumou D, Rahmstorf S (2012) A decade of weather extremes. Nat Clim Chang 2:491–496

    Google Scholar 

  • Cribb TH, Bray RA, Olson PD, Littlewood DTJ (2003) Life cycle evolution in the digenea: a new perspective from phylogeny. Adv Parasit 54:197–254

    Google Scholar 

  • Esch GW, Barger MA, Fellis KJ (2002) The transmission of digenetic trematodes: style, elegance, complexity. Integr Comp Biol 42:304–312

    PubMed  Google Scholar 

  • Faltýnková A (2005) Larval trematodes (Digenea) in molluscs from small water bodies near České Budějovice, Czech Republic. Acta Parasitol 50:49–55

    Google Scholar 

  • Fenwick GD (2001) The freshwater amphipoda (Crustacea) of New Zealand: a review. J R Soc NZ 31:341–363

    Google Scholar 

  • Franklinos LHV, Jones KE, Redding DW, Abubakar I (2019) The effect of global change on mosquito-borne disease. Lancet Infect Dis 19:e302–e312

    PubMed  Google Scholar 

  • Franzova VA, MacLeod CD, Wang T, Harley CDG (2019) Complex and interactive effects of ocean acidification and warming on the life span of a marine trematode parasite. Int J Parasitol 49:1015–1021

    CAS  PubMed  Google Scholar 

  • Friesen OC, Poulin R, Lagrue C (2017) Differential impacts of shared parasites on fitness components among competing hosts. Ecol Evol 7:4682–4693

    PubMed  PubMed Central  Google Scholar 

  • Friesen OC, Poulin R, Lagrue C (2018) Parasite-mediated microhabitat segregation between congeneric hosts. Biol Lett 14:20170671

    PubMed  PubMed Central  Google Scholar 

  • Galaktionov KV, Dobrovolskij A (2003) The biology and evolution of trematodes. Springer, The Netherlands

    Google Scholar 

  • Gilman SE, Urban MC, Tewksbury J, Gilchrist GW, Holt RD (2010) A framework for community interactions under climate change. Trends Ecol Evol 25:326–331

    Google Scholar 

  • Goedknegt MA, Welsh JE, Drent J, Thieltges DW (2015) Climate change and parasite transmission: how temperature affects parasite infectivity via predation on infective stages. Ecosphere 6:art96.

  • Gopko M, Mironova E, Pasternak A, Mikheev V, Taskinen J (2020) Parasite transmission in aquatic ecosystems under temperature change: effects of host activity and elimination of parasite larvae by filter-feeders. Oikos 129:1531–1540

    Google Scholar 

  • Gordy MA, Kish L, Tarrabain M, Hanington PC (2016) A comprehensive survey of larval digenean trematodes and their snail hosts in central Alberta, Canada. Parasitol Res 115:3867–3880

    PubMed  Google Scholar 

  • Haas W (2003) Parasitic worms: strategies of host finding, recognition and invasion. Zoology 106:349–364

    PubMed  Google Scholar 

  • Haas W, Beran B, Loy C (2008) Selection of the host’s habitat by cercariae: from laboratory experiments to the field. J Parasitol 94:1233–1238

    PubMed  Google Scholar 

  • Hall CJ, Burns CW (2002) Mortality and growth responses of Daphnia carinata to increases in temperature and salinity. Freshw Biol 47:451–458

    Google Scholar 

  • Harvell CD, Mitchell CE, Ward JR, Altizer S, Dobson AP, Ostfeld RS, Samuel MD (2002) Climate warming and disease risks for terrestrial and marine biota. Science 296:2158–2162

    CAS  PubMed  Google Scholar 

  • Hatcher MJ, Dick JTA, Dunn AM (2014) Parasites that change predator or prey behaviour can have keystone effects on community composition. Biol Lett 10:20130879

    PubMed  PubMed Central  Google Scholar 

  • Hechinger RF (2012) Faunal survey and identification key for the trematodes (Platyhelminthes: Digenea) infecting Potamopyrgus antipodarum (Gastropoda: Hydrobiidae) as first intermediate host. Zootaxa 27:1–27

    Google Scholar 

  • IPCC (2014) Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change [Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

  • Johnson PTJ, Chase JM (2004) Parasites in the food web: linking amphibian malformations and aquatic eutrophication. Ecol Lett 7:521–526

    Google Scholar 

  • Johnson PTJ, Chase JM, Dosch KL, Hartson RB, Gross JA, Larson DJ, Sutherland DR, Carpenter SR (2007) Aquatic eutrophication promotes pathogenic infection in amphibians. Proc Natl Acad Sci USA 104:15781–15786

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson PTJ, Dobson A, Lafferty KD, Marcogliese DJ, Memmott J, Orlofske SA, Poulin R, Thieltges DW (2010) When parasites become prey: ecological and epidemiological significance of eating parasites. Trends Ecol Evol 25:362–371

    PubMed  Google Scholar 

  • Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, Daszak P (2008) Global trends in emerging infectious diseases. Nature 451:990–993

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karvonen A, Paukku S, Valtonen ET, Hudson PJ (2003) Transmission, infectivity and survival of Diplostomum spathaceum cercariae. Parasitology 127:217–224

    CAS  PubMed  Google Scholar 

  • Koehler AV, Brown B, Poulin R, Thieltges DW, Fredensborg BL (2012) Disentangling phylogenetic constraints from selective forces in the evolution of trematode transmission stages. Evol Ecol 26:1497–1512

    Google Scholar 

  • Koprivnikar J, Poulin R (2009) Interspecific and intraspecific variation in cercariae release. J Parasitol 95:14–19

    CAS  PubMed  Google Scholar 

  • Koprivnikar J, Lim D, Fu C, Brack SHM (2010) Effects of temperature, salinity, and pH on the survival and activity of marine cercariae. Parasitol Res 106:1167–1177

    PubMed  Google Scholar 

  • Kuris AM, Blaustein AR, Alio JJ (1980) Hosts as islands. Am Nat 116:570–586

    Google Scholar 

  • Kuris AM, Hechinger RF, Shaw JC, Whitney KL, Aguirre-Macedo L, Boch CA, Dobson AP, Dunham EJ, Fredensborg BL, Huspeni TC, Lorda J, Mababa L, Mancini FT, Mora AB, Pickering M, Talhouk NL, Torchin ME, Lafferty KD (2008) Ecosystem energetic implications of parasite and free-living biomass in three estuaries. Nature 454:515–518

    CAS  PubMed  Google Scholar 

  • Lafferty KD, Allesina S, Arim M, Briggs CJ, De Leo G, Dobson AP, Dunne JA, Johnson PTJ, Kuris AM, Marcogliese DJ, Martinez ND, Memmott J, Marquet PA, McLaughlin JP, Mordecai EA, Pascual M, Poulin R, Thieltges DW (2008) Parasites in food webs: the ultimate missing links. Ecol Lett 11:533–546

    PubMed  PubMed Central  Google Scholar 

  • Lagrue C, Poulin R (2015) Spatial covariation of local abundance among different parasite species: the effect of shared hosts. Parasitol Res 114:3637–3643

    CAS  PubMed  Google Scholar 

  • Lagrue C, McEwan J, Poulin R, Keeney DB (2007) Co-occurrences of parasite clones and altered host phenotype in a snail-trematode system. Int J Parasitol 37:1459–1467

    PubMed  Google Scholar 

  • Marcogliese DJ (2001) Implications of climate change for parasitism of animals in the aquatic environment. Can J Zool 79:1331–1352

    Google Scholar 

  • Marcogliese DJ (2008) The impact of climate change on the parasites and infectious diseases of aquatic animals. Rev Sci Tech Off Int Epiz 27:467–484

    CAS  Google Scholar 

  • Marcogliese DJ (2016) The distribution and abundance of parasites in aquatic ecosystems in a changing climate: more than just temperature. Integr Comp Biol 56:611–619

    PubMed  Google Scholar 

  • Mas-Coma S, Valero MA, Bargues MD (2009) Climate change effects on trematodiases, with emphasis on zoonotic fascioliasis and schistosomiasis. Vet Parasitol 163:264–280

    PubMed  Google Scholar 

  • McCarthy AM (1999) The influence of temperature on the survival and infectivity of the cercariae of Echinoparyphium recurvatum (Digenea: Echinostomatidae). Parasitology 118:383–388

    PubMed  Google Scholar 

  • Meehl GA, Tebaldi C (2004) More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305:994–997

    CAS  PubMed  Google Scholar 

  • Mitchell D, Snelling EP, Hetem RS, Maloney SK, Strauss WM, Fuller A (2018) Revisiting concepts of thermal physiology: predicting responses of mammals to climate change. J Anim Ecol 87:956–973

    PubMed  Google Scholar 

  • Morley NJ (2011) Thermodynamics of cercarial survival and metabolism in a changing climate. Parasitology 138:1442–1452

    CAS  PubMed  Google Scholar 

  • Morley NJ (2012) Cercariae (Platyhelminthes: Trematoda) as neglected components of zooplankton communities in freshwater habitats. Hydrobiologia 691:7–19

    CAS  Google Scholar 

  • Morley NJ (2020) Cercarial swimming performance and its potential role as a key variable of trematode transmission. Parasitology 147:1369–1374

    Google Scholar 

  • Morley NJ, Lewis JW (2013) Thermodynamics of cercarial development and emergence in trematodes. Parasitology 140:1211–1224

    CAS  PubMed  Google Scholar 

  • Morley NJ, Lewis JW, Hoole D (2006) Pollutant-induced effects on immunological and physiological interactions in aquatic host–trematode systems: implications for parasite transmission. J Helminthol 80:137–149

    CAS  PubMed  Google Scholar 

  • Mouritsen KN, Poulin R (2003) The mud flat anemone–cockle association: mutualism in the intertidal zone? Oecologia 135:131–137

    PubMed  Google Scholar 

  • Mouritsen KN, Sørensen MM, Poulin R, Fredensborg BL (2018) Coastal ecosystems on a tip** point: global warming and parasitism combine to alter community structure and function. Glob Chang Biol 24:4340–4356

    PubMed  Google Scholar 

  • Noldus LP, Spink AJ, Tegelenbosch RA (2001) EthoVision: a versatile video tracking system for automation of behavioral experiments. Behav Res Methods Instrum Comput 33:398–414

    CAS  PubMed  Google Scholar 

  • Parker GA, Chubb JC, Ball MA, Roberts GN (2003) Evolution of complex life cycles in helminth parasites. Nature 425:480–484

    CAS  PubMed  Google Scholar 

  • Paull SH, Johnson PTJ (2011) High temperature enhances host pathology in a snail-trematode system: possible consequences of climate change for the emergence of disease. Freshw Biol 56:767–778

    Google Scholar 

  • Paull SH, Raffel TR, Lafonte BE, Johnson PTJ (2015) How temperature shifts affect parasite production: testing the roles of thermal stress and acclimation. Funct Ecol 29:941–950

    Google Scholar 

  • Pecl GT, Araújo MB, Bell JD, Blanchard J, Bonebrake TC, Chen I-C, Clark TD, Colwell RK, Danielsen F, Evengård B, Falconi L, Ferrier S, Frusher S, Garcia RA, Griffis RB, Hobday AJ, Janion-Scheepers C, Jarzyna MA, Jennings S, Lenoir J, Linnetved HI, Martin VY, McCormack PC, McDonald J, Mitchell NJ, Mustonen T, Pandolfi JM, Pettorelli N, Popova E, Robinson SA, Scheffers BR, Shaw JD, Sorte CJB, Strugnell JM, Sunday JM, Tuanmu M-N, Vergés A, Villanueva C, Wernberg T, Wapstra E, Williams SE (2017) Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355:eaai9214

    PubMed  Google Scholar 

  • Pietrock M, Marcogliese DJ (2003) Free-living endohelminth stages: at the mercy of environmental conditions. Trends Parasitol 19:293–299

    PubMed  Google Scholar 

  • Poulin R (2006) Global warming and temperature-mediated increases in cercarial emergence in trematode parasites. Parasitology 132:143–151

    CAS  PubMed  Google Scholar 

  • Poulin R (2011) The many roads to parasitism. A tale of convergence. Adv Parasit 74:1–40

    Google Scholar 

  • Poulin R, Mouritsen KN (2006) Climate change, parasitism and the structure of intertidal ecosystems. J Helminthol 80:183–191

    CAS  PubMed  Google Scholar 

  • Presswell B, Blasco-Costa I, Kostadinova A (2014) Two new species of Maritrema Nicoll, 1907 (Digenea: Microphallidae) from New Zealand: morphological and molecular characterisation. Parasitol Res 113:1641–1656

    PubMed  Google Scholar 

  • Schwelm J, Soldánová M, Vyhlídalová T, Sures B, Selbach C (2018) Small but diverse: larval trematode communities in the small freshwater planorbids Gyraulus albus and Segmentina nitida (Gastropoda: Pulmonata) from the Ruhr River, Germany. Parasitol Res 117:241–255

    CAS  PubMed  Google Scholar 

  • Schwelm J, Kudlai O, Smit NJ, Selbach C, Sures B (2020) High parasite diversity in a neglected host: larval trematodes of Bithynia tentaculata in Central Europe. J Helminthol 94:e120

    CAS  PubMed  Google Scholar 

  • Selbach C, Poulin R (2018) Parasites in space and time: a novel method to assess and illustrate host-searching behaviour of trematode cercariae. Parasitology 145:1469–1474

    PubMed  Google Scholar 

  • Selbach C, Rosenkranz M, Poulin R (2019) Cercarial behavior determines risk of predation. J Parasitol 105:330–333

    PubMed  Google Scholar 

  • Selbach C, Soldánová M, Feld CK, Kostadinova A, Sures B (2020) Hidden parasite diversity in a European freshwater system. Sci Rep 10:2694

    CAS  PubMed  PubMed Central  Google Scholar 

  • Studer A, Poulin R (2013) Differential effects of temperature variability on the transmission of a marine parasite. Mar Biol 160:2763–2773

    Google Scholar 

  • Studer A, Thieltges D, Poulin R (2010) Parasites and global warming: net effects of temperature on an intertidal host–parasite system. Mar Ecol Prog Ser 415:11–22

    Google Scholar 

  • Thieltges DW, Rick J (2006) Effect of temperature on emergence, survival and infectivity of cercariae of the marine trematode Renicola roscovita (Digenea: Renicolidae). Dis Aquat Organ 73:63–68

    PubMed  Google Scholar 

  • Thieltges DW, Bordalo MD, Hernández AC, Prinz K, Jensen KT (2008) Ambient fauna impairs parasite transmission in a marine parasite–host system. Parasitology 135:1111–1116

    CAS  PubMed  Google Scholar 

  • Thieltges DW, Jensen KT, Poulin R (2008) The role of biotic factors in the transmission of free-living endohelminth stages. Parasitology 135:407–426

    CAS  PubMed  Google Scholar 

  • Thomas F, Poulin R, de Meeus T, Guegan JF, Renaud F (1999) Parasites and ecosystem engineering: what roles could they play? Oikos 84:167–171

    Google Scholar 

  • Toledo R, Muñoz-Antoli C, Pérez M, Esteban JG (1999) Survival and infectivity of Hypoderaeum conoideum and Euparyphium albuferensis cercariae under laboratory conditions. J Helminthol 73:177–182

    CAS  PubMed  Google Scholar 

  • Traill LW, Lim MLM, Sodhi NS, Bradshaw CJA (2010) Mechanisms driving change: altered species interactions and ecosystem function through global warming. J Anim Ecol 79:937–947

    PubMed  Google Scholar 

  • Vielma S, Lagrue C, Poulin R, Selbach C (2019) Non-host organisms impact transmission at two different life stages in a marine parasite. Parasitol Res 118:111–117

    PubMed  Google Scholar 

  • Welsh JE, Liddell C, van der Meer J, Thieltges DW (2017) Parasites as prey: the effect of cercarial density and alternative prey on consumption of cercariae by four non-host species. Parasitology 144:1775–1782

    PubMed  Google Scholar 

  • Woodward G, Perkins DM, Brown LE (2010) Climate change and freshwater ecosystems: impacts across multiple levels of organization. Philos Trans R Soc B Biol Sci 365:2093–2106

    Google Scholar 

Download references

Acknowledgements

We are grateful to Clément Lagrue, Olwyn Friesen and Micha Rosenkranz for help in the field and laboratory, and to Sheri Johnson and Anne Besson for providing access to EthoVision. We thank two anonymous reviewers for their constructive feedback on our manuscript.

Funding

CS has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant agreement No. 839635 TPOINT, and from the German Research Foundation (DFG, SE 2728/1-1).

Author information

Authors and Affiliations

Authors

Contributions

CS and RP conceived and designed the experiments, analysed the data and wrote the manuscript. CS performed the experiments.

Corresponding author

Correspondence to Christian Selbach.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable institutional and/or national guidelines for the care and use of animals were followed.

Additional information

Communicated by Lisa Belden.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selbach, C., Poulin, R. Some like it hotter: trematode transmission under changing temperature conditions. Oecologia 194, 745–755 (2020). https://doi.org/10.1007/s00442-020-04800-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-020-04800-y

Keywords

Navigation