Log in

Paracrine and endocrine pathways of natriuretic peptides assessed by ligand-receptor map** in the Japanese eel brain

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The natriuretic peptide (NP) family consists of cardiac NPs (ANP, BNP, and VNP) and brain NPs (CNPs) in teleosts. In addition to CNP1-4, a paralogue of CNP4 (named CNP4b) was recently discovered in basal teleosts including Japanese eel. Mammals have lost most Cnps during the evolution, but teleost cnps were conserved and diversified, suggesting that CNPs are important hormones for maintaining brain functions in teleost. The present study evaluated the potency of each Japanese eel CNP to their NP receptors (NPR-A, NPR-B, NPR-C, and NPR-D) overexpressed in CHO cells. A comprehensive brain map of cnps- and nprs-expressing neurons in Japanese eel was constructed by integrating the localization results obtained by in situ hybridization. The result showed that CHO cells expressing NPR-A and NPR-B induced strong cGMP productions after stimulation by cardiac and brain NPs, respectively. Regarding brain distribution of cnps, cnp1 is engaged in the ventral telencephalic area and periventricular area including the parvocellular preoptic nucleus (Pp), anterior/posterior tuberal nuclei, and periventricular gray zone of the optic tectum. cnp3 is found in the habenular nucleus and prolactin cells in the pituitary. cnp4 is expressed in the ventral telencephalic area, while cnp4b is expressed in the motoneurons in the medullary area. Such CNP isoform-specific localizations suggest that function of each CNP has diverged in the eel brain. Furthermore, the Pp lacking the blood-brain barrier expressed both npra and nprb, suggesting that endocrine and paracrine NPs interplay for regulating the Pp functions in Japanese eels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amo R, Fredes F, Kinoshita M, Aoki R, Aizawa H, Agetsuma M, Aoki T, Shiraki T, Kakinuma H, Matsuda M, Yamazaki M, Takahoko M, Tsuboi T, Higashijima S, Miyasaka N, Koide T, Yabuki Y, Yoshihara Y, Fukai T, Okamoto H (2014) The habenulo-raphe serotonergic circuit encodes an aversive expectation value essential for adaptive active avoidance of danger. Neuron 84:1034–1048

    Article  CAS  PubMed  Google Scholar 

  • Chou MY, Amo R, Kinoshita M, Cherng BW, Shimazaki H, Agetsuma M, Shiraki T, Aoki T, Takahoko M, Yamazaki M, Higashijima S, Okamoto H (2016) Social conflict resolution regulated by two dorsal habenular subregions in zebrafish. Science 352:87–90

    Article  CAS  PubMed  Google Scholar 

  • Clasen RA, Pandolfi S, Hass GM (1970) Vital staining, serum albumin and the blood-brain barrier. J Neuropathol Exp Neurol 29:266–284

    Article  CAS  PubMed  Google Scholar 

  • de Bold AJ (2011) Thirty years of research on atrial natriuretic factor: historical background and emerging concepts. Can J Physiol Pharmacol 89:527–531

    Article  PubMed  Google Scholar 

  • Fitzsimons JT (1998) Angiotensin, thirst, and sodium appetite. Physiol Rev 78:583–686

    Article  CAS  PubMed  Google Scholar 

  • Fowkes RC, McArdle CA (2000) C-type natriuretic peptide: an important neuroendocrine regulator? Trends Endocrinol Metab 11:333–338

    Article  CAS  PubMed  Google Scholar 

  • Ganz J, Kroehne V, Freudenreich D, Machate A, Geffarth M, Braasch I, Kaslin J, Brand M (2015) Subdivisions of the adult zebrafish pallium based on molecular marker analysis. F1000Res 3:308

    Article  PubMed Central  Google Scholar 

  • Greenwood AK, Wark AR, Fernald RD, Hofmann HA (2008) Expression of arginine vasotocin in distinct preoptic regions is associated with dominant and subordinate behaviour in an African cichlid fish. Proc Biol Sci 275:2393–2402

    PubMed  PubMed Central  Google Scholar 

  • Hikosaka O (1991) Basal ganglia–possible role in motor coordination and learning. Curr Opin Neurobiol 1:638–643

    Article  CAS  PubMed  Google Scholar 

  • Inoue K, Naruse K, Yamagami S, Mitani H, Suzuki N, Takei Y (2003) Four functionally distinct C-type natriuretic peptides found in fish reveal evolutionary history of the natriuretic peptide system. Proc Natl Acad Sci USA 100:10079–10084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inoue K, Sakamoto T, Yuge S, Iwatani H, Yamagami S, Tsutsumi M, Hori H, Cerra MC, Tota B, Suzuki N, Okamoto N, Takei Y (2005) Structural and functional evolution of three cardiac natriuretic peptides. Mol Biol Evol 22:2428–2434

    Article  CAS  PubMed  Google Scholar 

  • Ito S, Mukuda T, Ando M (2006) Catecholamines inhibit neuronal activity in the glossopharyngeal-vagal motor complex of the Japanese eel: significance for controlling swallowing water. J Exp Zool A Comp Exp Biol 305:499–506

    Article  PubMed  Google Scholar 

  • Ito Y, Tanaka H, Okamoto H, Ohshima T (2010) Characterization of neural stem cells and their progeny in the adult zebrafish optic tectum. Dev Biol 342:26–38

    Article  CAS  PubMed  Google Scholar 

  • Johnson KR, Olson KR (2008) Comparative physiology of the piscine natriuretic peptide system. Gen Comp Endocrinol 157:21–26

    Article  CAS  PubMed  Google Scholar 

  • Kaiya H, Takei Y (1996a) Changes in plasma atrial and ventricular natriuretic peptide concentrations after transfer of eels from freshwater to seawater or vice versa. Gen Comp Endocrinol 104:337–345

    Article  CAS  PubMed  Google Scholar 

  • Kaiya H, Takei Y (1996b) Atrial and ventricular natriuretic peptide concentrations in plasma of freshwater- and seawater-adapted eels. Gen Comp Endocrinol 102:183–190

    Article  CAS  PubMed  Google Scholar 

  • Katayama Y, Wong MK, Kusakabe M, Fujio M, Takahashi N, Yaguchi M, Tsukada T (2020) Seawater transfer down-regulates C-type natriuretic peptide-3 expression in prolactin-producing cells of Japanese eel: negative correlation with plasma chloride concentration. Mol Cell Endocrinol 507:110780

    Article  CAS  PubMed  Google Scholar 

  • Katayama Y, Saito A, Ogoshi M, Tsuneoka Y, Mukuda T, Azuma M, Kusakabe M, Takei Y, Tsukada T (2022) Gene duplication of C-type natriuretic peptide-4 (CNP4) in teleost lineage elicits subfunctionalization of ancestral CNP. Cell Tissue Res 388:225–238

    Article  CAS  PubMed  Google Scholar 

  • Kawabata Y, Hiraki T, Takeuchi A, Okubo K (2012) Sex differences in the expression of vasotocin/isotocin, gonadotropin-releasing hormone, and tyrosine and tryptophan hydroxylase family genes in the medaka brain. Neuroscience 218:65–77

    Article  CAS  PubMed  Google Scholar 

  • Kawakoshi A, Hyodo S, Inoue K, Kobayashi Y, Takei Y (2004) Four natriuretic peptides (ANP, BNP, VNP and CNP) coexist in the sturgeon: identification of BNP in fish lineage. J Mol Endocrinol 32:547–555

    Article  CAS  PubMed  Google Scholar 

  • Kellner M, Diehl I, Knaudt K, Schüle C, Jahn H, Wiedemann K (1997) C-type natriuretic peptide exerts stimulatory effects on the corticotropin-releasing hormone-induced secretion of hormones in normal man. Eur J Endocrinol 136:388–393

    Article  CAS  PubMed  Google Scholar 

  • Kishimoto I, Tokudome T, Nakao K, Kangawa K (2011) Natriuretic peptide system: an overview of studies using genetically engineered animal models. FEBS J 278:1830–1841

    Article  CAS  PubMed  Google Scholar 

  • Kolosov D, Kelly SP (2020) C-type natriuretic peptide regulates the molecular components of the rainbow trout gill epithelium tight junction complex. Peptides (NY) 124:170211

    Article  CAS  Google Scholar 

  • Lessey AJ, Mirczuk SM, Chand AN, Kurrasch DM, Korbonits M, Niessen SJM, Mcardle CA, Mcgonnell IM, Fowkes RC (2023) Pharmacological and genetic disruption of C-type natriuretic peptide (nppcl) expression in zebrafish (Danio rerio) causes stunted growth during development. Int J Mol Sci 18(24):12921

    Article  Google Scholar 

  • Matsumoto A, Arai Y (1992) Hypothalamus. In: Matsumoto A, Ishii S (eds) Atlas of Endocrine Organs. Springer-Verlag, Berlin, Heidelberg, pp 25–38

    Chapter  Google Scholar 

  • Meek J (1983) Functional anatomy of the tectum mesencephali of the goldfish. An explorative analysis of the functional implications of the laminar structural organization of the tectum. Brain Res 287:247–297

    Article  CAS  PubMed  Google Scholar 

  • Misono KS (2002) Natriuretic peptide receptor: structure and signaling. Mol Cell Biochem 230:49–60

    Article  CAS  PubMed  Google Scholar 

  • Miyanishi H, Nobata S, Takei Y (2011) Relative antidipsogenic potencies of six homologous natriuretic peptides in eels. Zoolog Sci 28:719–726

    Article  CAS  PubMed  Google Scholar 

  • Mueller T, Wullimann MF (2009) An evolutionary interpretation of teleostean forebrain anatomy. Brain Behav Evol 74:30–42

    Article  PubMed  Google Scholar 

  • Mukuda T, Ando M (2003) Brain Atlas of the Japanese Eel: Comparison to other fishes. Memories Faculty of Integrated Arts and Sciences, Hiroshima University, Series IV 29:1–25

    Google Scholar 

  • Mukuda T, Matsunaga Y, Kawamoto K, Yamaguchi KI, Ando M (2005) “Blood-contacting neurons” in the brain of the Japanese eel Anguilla japonica. J Exp Zool A Comp Exp Biol 303:366–376

    Article  PubMed  Google Scholar 

  • Mukuda T, Ando M (2010) Central regulation of the pharyngeal and upper esophageal reflexes during swallowing in the Japanese eel. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 196:111–122

    Article  PubMed  Google Scholar 

  • Mukuda T, Hamasaki S, Koyama Y, Takei Y, Kaidoh T, Inoué T (2013) A candidate of organum vasculosum of the lamina terminalis with neuronal connections to neurosecretory preoptic nucleus in eels. Cell Tissue Res 353:525–538

    Article  CAS  PubMed  Google Scholar 

  • Nakamori T, Chiba Y, Fujitani K, Makita A, Okubo T, Hirai K, Takamatsu N, Ohki-Hamazaki H (2019) Characteristic expressions of the natriuretic peptide family in the telencephalon of juvenile chick. Brain Res 1708:116–125

    Article  CAS  PubMed  Google Scholar 

  • Nobata S, Ventura A, Kaiya H, Takei Y (2010) Diversified cardiovascular actions of six homologous natriuretic peptides (ANP, BNP, VNP, CNP1, CNP3, and CNP4) in conscious eels. Am J Physiol Regul Integr Comp Physiol 298:R1549–R1559

    Article  CAS  PubMed  Google Scholar 

  • Potter LR (2011) Natriuretic peptide metabolism, clearance and degradation. FEBS J 278:1808–1817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potter LR, Abbey-Hosch S, Dickey DM (2006) Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling functions. Endocr Rev 27:47–72

    Article  CAS  PubMed  Google Scholar 

  • Pouso P, Cabana Á, Goodson JL, Silva A (2019) Preoptic area activation and vasotocin involvement in the reproductive behavior of a weakly pulse-type electric fish, Brachyhypopomus gauderio. Front Integr Neurosci 13:1–11

    Article  Google Scholar 

  • Saito D, Komatsuda M, Urano A (2004) Functional organization of preoptic vasotocin and isotocin neurons in the brain of rainbow trout: central and neurohypophysial projections of single neurons. Neuroscience 124:973–984

    Article  CAS  PubMed  Google Scholar 

  • Sakai N, Ohno H, Yoshida M, Iwamoto E, Kurogi A, Jiang D, Sato T, Miyazato M, Kojima M, Kato J, Ida T (2021) Characterization of putative tachykinin peptides in Caenorhabditis elegans. Biochem Biophys Res Commun 559:197–202

    Article  CAS  PubMed  Google Scholar 

  • Saria A, Lundberg JM (1983) Evans blue fluorescence: quantitative and morphological evaluation of vascular permeability in animal tissues. J Neurosci Methods 8:41–49

    Article  CAS  PubMed  Google Scholar 

  • Schulz S (2005) C-type natriuretic peptide and guanylyl cyclase B receptor. Peptides (NY) 26:1024–1034

    Article  CAS  Google Scholar 

  • Sellitti DF, Koles N, Mendonça MC (2011) Regulation of C-type natriuretic peptide expression. Peptides (NY) 32:1964–1971

    Article  CAS  Google Scholar 

  • Sellitti DF, Perrella G, Doi SQ, Curcio F (2001) Natriuretic peptides increase cAMP production in human thyrocytes via the natriuretic peptide clearance receptor (NPR-C). Regul Pept 97:103–109

    Article  CAS  PubMed  Google Scholar 

  • Takei Y (2000) Comparative physiology of body fluid regulation in vertebrates with special reference to thirst regulation. Jpn J Physiol 50:171–186

    Article  CAS  PubMed  Google Scholar 

  • Takei Y (2021) Evolution of the membrane/particulate guanylyl cyclase: From physicochemical sensors to hormone receptors. Gen Comp Endocrinol 315:113797

    Article  PubMed  Google Scholar 

  • Takei Y, Takahashi A, Watanabe TX, Nakajima K, Sakakibara S (1991) A novel natriuretic peptide isolated from eel cardiac ventricles. FEBS Lett 282:317–320

    Article  CAS  PubMed  Google Scholar 

  • Takei Y, Inoue K, Trajanovska S, Donald JA (2011) B-type natriuretic peptide (BNP), not ANP, is the principal cardiac natriuretic peptide in vertebrates as revealed by comparative studies. Gen Comp Endocrinol 171:258–266

    Article  CAS  PubMed  Google Scholar 

  • Tsukada T, Nobata S, Hyodo S, Takei Y (2007) Area postrema, a brain circumventricular organ, is the site of antidipsogenic action of circulating atrial natriuretic peptide in eels. J Exp Biol 210:3970–3978

    Article  CAS  PubMed  Google Scholar 

  • Tsukada T, Takei Y (2001) Relative potency of three homologous natriuretic peptides (ANP, CNP and VNP) in eel osmoregulation. Zool Sci 18:1253–1258

    Article  CAS  Google Scholar 

  • Uyama O, Okamura N, Yanase M, Narita M, Kawabata K, Sugita M (1988) Quantitative evaluation of vascular permeability in the gerbil brain after transient ischemia using Evans blue fluorescence. J Cereb Blood Flow Metab 8:282–284

    Article  CAS  PubMed  Google Scholar 

  • Ventura A, Kawakoshi A, Inoue K, Takei Y (2006) Multiple natriuretic peptides coexist in the most primitive extant ray-finned fish, bichir Polypterus endlicheri. Gen Comp Endocrinol 146:251–256

    Article  CAS  PubMed  Google Scholar 

  • Vernier P (2017) The brains of teleost fishes. Evolution of nervous systems. Elsevier, Netherlands, pp 59–75

    Chapter  Google Scholar 

  • Villalón A, Sepúlveda M, Guerrero N, Meynard MM, Palma K, Concha ML (2012) Evolutionary plasticity of habenular asymmetry with a conserved efferent connectivity pattern. PLoS ONE 7:e35329

    Article  PubMed  PubMed Central  Google Scholar 

  • Zempo B, Kanda S, Okubo K, Akazome Y, Oka Y (2013) Anatomical distribution of sex steroid hormone receptors in the brain of female medaka. J Comp Neurol 521:1760–1780

    Article  CAS  PubMed  Google Scholar 

  • Zucker DK, Wooten GF, Lothman’ EW, (1983) Blood-brain barrier changes with kainic acid-induced limbic seizures. Exp Neurol 79:422–433

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Christopher A. Loretz of the State University of New York at Buffalo for critical reading of the manuscript and Dr. Naoyuki Yamamoto of Nagoya University for valuable advice on the fish brain anatomy.

Funding

This work was supported in part by JSPS KAKENHI Grants (nos. 20K06242 to TT, 20K15604 to YK, and 22K06291 to MW) and the Toyo Suisan Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takehiro Tsukada.

Ethics declarations

Ethical approval

This study was approved by the Animal Experiment Committee of Toho University. This article does not contain any studies involving human participants.

Consent to participate

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izumi, T., Saito, A., Ida, T. et al. Paracrine and endocrine pathways of natriuretic peptides assessed by ligand-receptor map** in the Japanese eel brain. Cell Tissue Res 396, 197–212 (2024). https://doi.org/10.1007/s00441-024-03873-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-024-03873-y

Keywords

Navigation