Log in

Olfactory subsystems in the peripheral olfactory organ of anuran amphibians

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Anuran amphibians (frogs and toads) typically have a complex life cycle, involving aquatic larvae that metamorphose to semi-terrestrial juveniles and adults. However, the anuran olfactory system is best known in Xenopus laevis, an animal with secondarily aquatic adults. The larval olfactory organ contains two distinct sensory epithelia: the olfactory epithelium (OE) and vomeronasal organ (VNO). The adult organ contains three: the OE, the VNO, and a “middle cavity” epithelium (MCE), each in its own chamber. The sensory epithelia of Xenopus larvae have overlap** sensory neuron morphology (ciliated or microvillus) and olfactory receptor gene expression. The MCE of adults closely resembles the OE of larvae, and senses waterborne odorants; the adult OE is distinct and senses airborne odorants. Olfactory subsystems in other (non-pipid) anurans are diverse. Many anuran larvae show a patch of olfactory epithelium exposed in the buccal cavity (bOE), associated with a grazing feeding mode. And other anuran adults do not have a sensory MCE, but many have a distinct patch of epithelium adjacent to the OE, the recessus olfactorius (RO), which senses waterborne odorants. Olfaction plays a wide variety of roles in the life of larval and adult anurans, and some progress has been made in identifying relevant odorants, including pheromones and feeding cues. Increased knowledge of the diversity of olfactory structure, of odorant receptor expression patterns, and of factors that affect the access of odorants to sensory epithelia will enable us to better understand the adaptation of the anuran olfactory system to aquatic and terrestrial environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altner H (1962) Untersuchungen über Leistungen und Bau der Nase des südafrikanischen Krallenfrosches Xenopus laevis (Daudin, 1803). Z Für Vgl Physiol 45:272–306

    Google Scholar 

  • Amano T, Gascuel J (2012) Expression of odorant receptor family, type 2 OR in the aquatic olfactory cavity of amphibian frog Xenopus tropicalis. PLoS One 7:e33922

    CAS  PubMed  PubMed Central  Google Scholar 

  • Asay MJ, Harowicz PG, Su L (2005) Chemically mediated mate recognition in the tailed frog (Ascaphus truei). In: Mason RT, LeMaster MP, Müller-Schwarze D (eds) Chemical signals in vertebrates 10. Springer, New York, pp 24–31

    Google Scholar 

  • Belanger RM, Corkum LD (2009) Review of aquatic sex pheromones and chemical communication in anurans. J Herpetol 43:184–191

    Google Scholar 

  • Benzekri NA, Reiss JO (2012) Olfactory metamorphosis in the coastal tailed frog Ascaphus truei (Amphibia, Anura, Leiopelmatidae). J Morphol 273:68–87

    PubMed  Google Scholar 

  • Bishop IR, Foxon GEH (1968) The mechanism of breathing in the South American lungfish, Lepidosiren paradoxa; a radiological study. J Zool 154:263–271. https://doi.org/10.1111/j.1469-7998.1968.tb01663.x

    Article  Google Scholar 

  • Blaustein AR, O'hara RK (1982) Kin recognition in Rana cascadae tadpoles: maternal and paternal effects. Anim Behav 30:1151–1157

    Google Scholar 

  • Bossuyt F, Schulte LM, Maex M et al (2019) Multiple independent recruitment of sodefrin precursor-like factors in anuran sexually dimorphic glands. Mol Biol Evol 36:1921–1930. https://doi.org/10.1093/molbev/msz115

    Article  CAS  PubMed  Google Scholar 

  • Broman I (1920) Das Organon vomero-nasale Jacobsoni — ein Wassergeruchsorgan! Anat Hefte 58:137–191. https://doi.org/10.1007/BF02033831

    Article  Google Scholar 

  • Buck L, Axel R (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65:175–187

    CAS  Google Scholar 

  • Byrne PG, Keogh JS (2007) Terrestrial toadlets use chemosignals to recognize conspecifics, locate mates and strategically adjust calling behaviour. Anim Behav 74:1155–1162. https://doi.org/10.1016/j.anbehav.2006.10.033

    Article  Google Scholar 

  • Date-Ito A, Ohara H, Ichikawa M, Mori Y, Hagino-Yamagishi K (2008) Xenopus V1R vomeronasal receptor family is expressed in the main olfactory system. Chem Senses 33:339–346

    CAS  PubMed  Google Scholar 

  • Dawley EM (1998) Olfaction. In: Heatwole H (ed) Amphibian biology: sensory perception. Surrey Beatty & Sons, Chip** Norton, pp 713–742

    Google Scholar 

  • Dittrich K, Kuttler J, Hassenklöver T, Manzini I (2016) Metamorphic remodeling of the olfactory organ of the African clawed frog, Xenopus laevis. J Comp Neurol 524:986–998

    PubMed  Google Scholar 

  • Døving KB, Trotier D, Rosin JF, Holley A (1993) Functional architecture of the vomeronasal organ of the frog (genus Rana). Acta Zool 74:173–180

    Google Scholar 

  • Duellman WE, Trueb L (1986) Biology of amphibians. McGraw-Hill, New York

    Google Scholar 

  • Dulac C, Axel R (1995) A novel family of genes encoding putative pheromone receptors in mammals. Cell 83:195–206

    CAS  PubMed  Google Scholar 

  • Eisthen HL (1992) Phylogeny of the vomeronasal system and of receptor cell types in the olfactory and vomeronasal epithelia of vertebrates. Microsc Res Tech 23:1–21

    CAS  PubMed  Google Scholar 

  • Eisthen HL (1997) Evolution of vertebrate olfactory systems. Brain Behav Evol 50:222–233

    CAS  PubMed  Google Scholar 

  • Eisthen HL (2000) Presence of the vomeronasal system in aquatic salamanders. Phil Trans Roy Soc Lond B 355:1209–1213

    CAS  Google Scholar 

  • Forester DC, Wisnieski A (1991) The significance of airborne olfactory cues to the recognition of home area by the dart-poison frog Dendrobates pumilio. J Herpetol 25:502–504. https://doi.org/10.2307/1564782

    Article  Google Scholar 

  • Franceschini F, Sbarbati A, Zancanaro C (1991) The vomeronasal organ in the frog, Rana esculenta An electron microscopy study. J Submicrosc Cytol Pathol 23:221–231

    CAS  PubMed  Google Scholar 

  • Freitag J, Krieger J, Strotmann J, Breer H (1995) Two classes of olfactory receptors in Xenopus laevis. Neuron 15:1383–1392

    CAS  PubMed  Google Scholar 

  • Gaudin A, Gascuel J (2005) 3D atlas describing the ontogenic evolution of the primary olfactory projections in the olfactory bulb of Xenopus laevis. J Comp Neurol 489:403–424. https://doi.org/10.1002/cne.20655

    Article  PubMed  Google Scholar 

  • Gliem S, Syed AS, Sansone A, Kludt E, Tantalaki E, Hassenklöver T, Korsching SI, Manzini I (2013) Bimodal processing of olfactory information in an amphibian nose: odor responses segregate into a medial and a lateral stream. Cell Mol Life Sci 70:1965–1984

    CAS  PubMed  Google Scholar 

  • González A, Morona R, López JM et al (2010) Lungfishes, like tetrapods, possess a vomeronasal system. Front Neuroanat 4:130. https://doi.org/10.3389/fnana.2010.00130

    Article  PubMed  PubMed Central  Google Scholar 

  • Gradwell N (1969) The function of the internal nares of the bullfrog tadpole. Herpetologica 25:120–121

    Google Scholar 

  • Gradwell N (1971) Gill irrigation in Rana catesbeiana. Part II. On the musculoskeletal mechanism. Can J Zool 50:501–521

    Google Scholar 

  • Greer PL, Bear DM, Lassance JM, Bloom ML, Tsukahara T, Pashkovski SL, Masuda FK, Nowlan AC, Kirchner R, Hoekstra HE, Datta SR (2016) A family of non-GPCR chemosensors defines an alternative logic for mammalian olfaction. Cell 165:1734–1748

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grubb JC (1973) Olfactory orientation in Bufo woodhousei fowleri, Pseudacris clarki and Pseudacris streckeri. Anim Behav 21:726–732. https://doi.org/10.1016/S0003-3472(73)80098-3

    Article  CAS  PubMed  Google Scholar 

  • Hagino-Yamagishi K, Nakazawa H (2011) Involvement of Golf-expressing neurons in the vomeronasal system of Bufo japonicus. J Comp Neurol 519:3189–3201

    CAS  PubMed  Google Scholar 

  • Hagino-Yamagishi K, Moriya K, Kubo H, Wakabayashi Y, Isobe N, Saito S, Ichikawa M, Yazaki K (2004) Expression of vomeronasal receptor genes in Xenopus laevis. J Comp Neurol 472:246–256

    CAS  PubMed  Google Scholar 

  • Hansen A, Zielinski BS (2005) Diversity in the olfactory epithelium of bony fishes: development, lamellar arrangement, sensory neuron cell types and transduction components. J Neurocytol 34:183–208

    CAS  PubMed  Google Scholar 

  • Hansen A, Reiss JO, Gentry CL, Burd GD (1998) Ultrastructure of the olfactory organ in the clawed frog, Xenopus laevis, during larval development and metamorphosis. J Comp Neurol 398:273–288

    CAS  PubMed  Google Scholar 

  • Heerema JL, Bogart SJ, Helbing CC, Pyle GG (2020) Olfactory epithelium ontogenesis and function in postembryonic North American Bullfrog (Rana (Lithobates) catesbeiana) tadpoles. Can J Zool 98:367–375

    CAS  Google Scholar 

  • Helling H (1938) Das Geruchsorgan der Anuren, vergleichend-morphologisch betrachtet. Zeitschrift für Anatomie und Entwicklungsgeschichte 108:587–643

    Google Scholar 

  • Herrada G, Dulac C (1997) A novel family of putative pheromone receptors in mammals with a topographically organized and sexually dimorphic distribution. Cell 90:763–773

    CAS  PubMed  Google Scholar 

  • Higgs DM, Burd GD (2001) Neuronal turnover in the Xenopus laevis olfactory epithelium during metamorphosis. J Comp Neurol 433:124–130

    CAS  PubMed  Google Scholar 

  • Jorgensen BC (2000) Amphibian respiration and olfaction and their relationships: from Robert Townson (1794) to the present. Biol Rev 75:297–345

    CAS  PubMed  Google Scholar 

  • Jungblut LD, Paz DA, López-Costa JJ, Pozzi AG (2009) Heterogeneous distribution of G protein alpha subunits in the main olfactory and vomeronasal systems of Rhinella (Bufo) arenarum tadpoles. Zool Sci 26:722–728

    CAS  Google Scholar 

  • Jungblut LD, Pozzi AG, Paz DA (2011) Larval development and metamorphosis of the olfactory and vomeronasal organs in the toad Rhinella (Bufo) arenarum (Hensel, 1867). Acta Zool 92:305–315

    Google Scholar 

  • Jungblut LD, Pozzi AG, Paz DA (2012) A putative functional vomeronasal system in anuran tadpoles. J Anat 221:364–372

    PubMed  PubMed Central  Google Scholar 

  • Jungblut LD, Pozzi AG, Paz DA (2013) El sistema vomeronasal y su posible funcionalidad en larvas de anuros. Cuad Herpetol 27:47–56

  • Jungblut LD, Reiss JO, Paz DA, Pozzi AG (2017) Quantitative comparative analysis of the nasal chemosensory organs of anurans during larval development and metamorphosis highlights the relative importance of chemosensory subsystems in the group. J Morphol 278:1208–1219

    PubMed  Google Scholar 

  • Junk A, Wenzel S, Vences M, Nowack C (2014) Deviant anatomy of the olfactory system of the Malagasy frog Mantidactylus betsileanus (Anura: Mantellidae). Zool Anz 253:338–344

    Google Scholar 

  • Jurgens JD (1971) The morphology of the nasal region of Amphibia and its bearing on the phylogeny of the group. Ann Univ Stellenbosch 46:1–146

    Google Scholar 

  • King JD, Rollins-Smith LA, Nielsen PF, John A, Conlon JM (2005) Characterization of a peptide from skin secretions of male specimens of the frog, Leptodactylus fallax that stimulates aggression in male frogs. Peptides 26:597–601

    CAS  PubMed  Google Scholar 

  • Kleerekoper H (1969) Olfaction in fishes. Indiana University Press, Bloomington

    Google Scholar 

  • Královec K, Žáková P, Mužáková V (2013) Development of the olfactory and vomeronasal organs in Discoglossus pictus (Discoglossidae, Anura). J Morphol 274:24–34. https://doi.org/10.1002/jmor.20073

    Article  PubMed  Google Scholar 

  • Kramer G (1933) Untersuchungen über die Sinnesleistungen und das Orientierungsverhalten von Xenopus laevis Daud.. Zoologische Jahrbücher. Abteilung für allgemeine Zoologie und Physiologie der Tiere 52:629–676 (Doctoral dissertation)

  • Liberles SD, Buck LB (2006) A second class of chemosensory receptors in the olfactory epithelium. Nature 442:645–650

    CAS  PubMed  Google Scholar 

  • Meredith M, Marques D, O’Connell R, Stern F (1980) Vomeronasal pump: significance for male hamster sexual behavior. Science 207:1224–1226

    CAS  PubMed  Google Scholar 

  • Mezler M, Konzelman S, Freitag J et al (1999) Expression of olfactory receptors during development in Xenopus laevis. J Exp Biol 202:365–376

    CAS  PubMed  Google Scholar 

  • Millery J, Briand L, Bézirard V, Blon F, Fenech C, Parpaillon LR, Quennedey B, Pernollet JC, Gascuel J (2005) Specific expression of olfactory binding protein in the aerial olfactory cavity of adult and develo** Xenopus. Eur J Neurosc 22:1389–1313

    Google Scholar 

  • Mirza RS, Ferrari MC, Kiesecker JM, Chivers DP (2006) Responses of American toad tadpoles to predation cues: behavioural response thresholds, threat-sensitivity and acquired predation recognition. Behaviour 143:877–889

    Google Scholar 

  • Nakamuta S, Nakamuta N, Taniguchi K (2011) Distinct axonal projections from two types of olfactory receptor neurons in the middle chamber epithelium of Xenopus laevis. Cell Tissue Res 346:27–33. https://doi.org/10.1007/s00441-011-1238-y

    Article  CAS  PubMed  Google Scholar 

  • Nakamuta S, Nakamuta N, Taniguchi K, Taniguchi K (2012) Histological and ultrastructural characteristics of the primordial vomeronasal organ in lungfish. Anat Rec Adv Integr Anat Evol Biol 295:481–491. https://doi.org/10.1002/ar.22415

    Article  Google Scholar 

  • Nakamuta S, Nakamuta N, Taniguchi K, Taniguchi K (2013) Localization of the primordial vomeronasal organ and its relationship to the associated gland in lungfish. J Anat 222:481–485

    PubMed  PubMed Central  Google Scholar 

  • Niimura Y, Nei M (2005) Evolutionary dynamics of olfactory receptor genes in fishes and tetrapods. Proc Natl Acad Sci 102:6039–6044

    CAS  PubMed  Google Scholar 

  • Nodari F, Hsu FF, Fu X, Holekamp TF, Kao LF, Turk J, Holy TE (2008) Sulfated steroids as natural ligands of mouse pheromone-sensing neurons. J Neurosci 28:6407–6418

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nowack C (2011) Functional anatomy of the lateral nasal gland in anuran amphibians and its relation to the vomeronasal organ. J Herpetol 45:511–515

    Google Scholar 

  • Nowack C, Wöhrmann-Repenning A (2009) New anatomical analyses suggest a pum** mechanism for the vomeronasal organ in anurans. Copeia 2009:1–6

    Google Scholar 

  • Nowack C, Wöhrmann-Repenning A (2010) The nasolacrimal duct of anuran amphibians: suggestions on its functional role in vomeronasal perception. J Anat 216:510–517

    PubMed  PubMed Central  Google Scholar 

  • Nowack C, Jordan S, Wittmer C (2013) The recessus olfactorius: a cryptic olfactory organ of anuran amphibians. In: East ML, Dehnhard M (eds) Chemical signals in vertebrates 12. Springer, New York, pp 37–48

    Google Scholar 

  • Nowack C, Peram PS, Wenzel S et al (2017) Volatile compound secretion coincides with modifications of the olfactory organ in mantellid frogs. J Zool 303:72–81. https://doi.org/10.1111/jzo.12467

    Article  Google Scholar 

  • Oikawa T, Suzuki K, Saito TR et al (1998) Fine structure of three types of olfactory organ in Xenopus laevis. Anat Rec 252:301–310

    CAS  PubMed  Google Scholar 

  • Pearl CA, Cervantes M, Chan M, Ho U, Shoji R, Thomas EO (2000) Evidence for a mate-attracting chemosignal in the dwarf African clawed frog Hymenochirus. Horm Behav 38:67–74

    CAS  PubMed  Google Scholar 

  • Pelosi P (1996) Perireceptor events in olfaction. J Neurobiol 30:3–19

    CAS  PubMed  Google Scholar 

  • Perriman AW, Apponyi MA, Buntine MA, Jackway RJ, Rutland MW, White JW, Bowie JH (2008) Surface movement in water of splendipherin, the aquatic male sex pheromone of the tree frog Litoria splendida. FEBS J 275:3362–3374

    CAS  PubMed  Google Scholar 

  • Popescu VD, Brodie BS, Hunter ML, Zydlewski JD (2012) Use of olfactory cues by newly metamorphosed wood frogs (Lithobates sylvaticus) during emigration. Copeia 2012:424–431. https://doi.org/10.1643/CE-11-062

    Article  Google Scholar 

  • Poth D, Wollenberg KC, Vences M, Schulz S (2012) Volatile amphibian pheromones: macrolides from mantellid frogs from Madagascar. Angew Chem Int Ed 51:2187–2190. https://doi.org/10.1002/anie.201106592

    Article  CAS  Google Scholar 

  • Quinzio SI, Reiss JO (2017) The ontogeny of the olfactory system in ceratophryid frogs (Anura, Ceratophryidae). J Morphol 279:37–49

    PubMed  Google Scholar 

  • Raices M, Jungblut LD, Pozzi AG (2020) Evidence of the peptide identity of the epidermal alarm cue in tadpoles of the toad Rhinella arenarum. Herpetol J 30:230–233

  • Reese TS (1965) Olfactory cilia in the frog. J Cell Biol 25:209–230. https://doi.org/10.1083/jcb.25.2.209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reiss JO, Burd GD (1997) Metamorphic remodeling of the primary olfactory projection in Xenopus: developmental independence of projections from olfactory neuron subclasses. J Neurobiol 32:213–222

    CAS  PubMed  Google Scholar 

  • Reiss JO, Eisthen HL (2008) Comparative anatomy and physiology of chemical senses in amphibians. In: Thewissen JGM, Nummela S (eds) Sensory evolution on the threshold: adaptations in secondarily aquatic vertebrates. University of California Pres, Berkeley, pp 43–63

  • Rivière S, Challet L, Fluegge D, Spehr M, Rodriguez I (2009) Formyl peptide receptor-like proteins are a novel family of vomeronasal chemosensors. Nature 459:574–577

    PubMed  Google Scholar 

  • Sansone A, Hassenklöver T, Offner T, Fu X, Holy TE, Manzini I (2015) Dual processing of sulfated steroids in the olfactory system of an anuran amphibian. Front Cell Neurosci 9:373

    PubMed  PubMed Central  Google Scholar 

  • Shi Y-B (2000) Amphibian metamorphosis: from morphology to molecular biology. Wiley, New York

    Google Scholar 

  • Shiba Y, Sumomogi H, Nomura S et al (1980) Oral chemoreceptor organs of bullfrog tadpoles during metamorphosis. Develop Growth Differ 22:209–217. https://doi.org/10.1111/j.1440-169X.1980.00209.x

    Article  Google Scholar 

  • Shinn EA, Dole JW (1978) Evidence for a role for olfactory cues in the feeding response of leopard frogs, Rana pipiens. Herpetologica 34:167–172

    Google Scholar 

  • Sinsch U (1990) Migration and orientation in anuran amphibians. Ethol Ecol Evol 2:65–79

    Google Scholar 

  • Sollai G, Melis M, Magri S et al (2019) Association between the rs2590498 polymorphism of odorant binding protein (OBPIIa) gene and olfactory performance in healthy subjects. Behav Brain Res 372:112030. https://doi.org/10.1016/j.bbr.2019.112030

    Article  CAS  PubMed  Google Scholar 

  • Sorensen PW, Fine JM, Dvornikovs V, Jeffrey CS, Shao F, Wang J, Vrieze LA, Kari R, Anderson KR, Hoye TR (2005) Mixture of new sulfated steroids functions as a migratory pheromone in the sea lamprey. Nat Chem Biol 1:324–328

    CAS  PubMed  Google Scholar 

  • Starnberger I, Preininger D, Hödl W (2014) From uni- to multimodality: towards an integrative view on anuran communication. J Comp Physiol A 200:777–787. https://doi.org/10.1007/s00359-014-0923-1

    Article  Google Scholar 

  • Supekar SC, Gramapurohit NP (2018) Larval skipper frogs recognise kairomones of certain predators innately. J Ethol 36:143–149

    Google Scholar 

  • Syed AS, Sansone A, Nadler W, Manzini I, Korsching SI (2013) Ancestral amphibian v2rs are expressed in the main olfactory epithelium. Proc Natl Acad Sci 110:7714–7719

    CAS  PubMed  Google Scholar 

  • Syed AS, Sansone A, Röner S, Nia SB, Manzini I, Korsching SI (2015) Different expression domains for two closely related amphibian TAARs generate a bimodal distribution similar to neuronal responses to amine odors. Sci Rep 5:13935

    PubMed  PubMed Central  Google Scholar 

  • Syed AS, Sansone A, Hassenklöver T, Manzini I, Korsching SI (2017) Coordinated shift of olfactory amino acid responses and V2R expression to an amphibian water nose during metamorphosis. Cell Mol Life Sci 74:1711–1719

    CAS  PubMed  Google Scholar 

  • Taniguchi K, Toshima Y, Saito TR, Taniguchi K (1996) Development of the olfactory epithelium and vomeronasal organ in the Japanese reddish frog, Rana japonica. J Vet Med Sci 58:7–15

    CAS  PubMed  Google Scholar 

  • Tracy CR, Dole JW (1969) Orientation of displaced California toads, Bufo boreas, to their breeding sites. Copeia 1969:693–700. https://doi.org/10.2307/1441795

    Article  Google Scholar 

  • Veeranagoudar DK, Shanbhag BA, Saidapur SK (2004) Mechanism of food detection in the tadpoles of the bronze frog Rana temporalis. Acta Ethol 7:37–41

    Google Scholar 

  • Wabnitz PA, Bowie JH, Tyler MJ et al (1999) Aquatic sex pheromone from a male tree frog. Nature 401:444–445

    CAS  Google Scholar 

  • Wakabayashi Y, Ichikawa M (2008) Localization of G protein alpha subunits and morphology of receptor neurons in olfactory and vomeronasal epithelia in Reeve’s turtle, Geoclemys reevesii. Zool Sci 25:178–187

    CAS  Google Scholar 

  • Waldman B (1986) Chemical ecology of kin recognition in anuran amphibians. In: Chemical signals in vertebrates 4. Springer, Boston, pp 225–242. https://doi.org/10.1111/j.1095-8312.1979.tb00056.x

    Chapter  Google Scholar 

  • Wassersug R (1980) Internal oral features of larvae from eight anuran families: functional, systematic, evolutionary and ecological considerations. Univ Kans Mus Nat Hist Misc Publ 68:1–146

    Google Scholar 

  • Wassersug RJ, Hoff K (1979) A comparative study of the buccal pum** mechanism of tadpoles. Biol J Linn Soc 12:225–259. https://doi.org/10.1111/j.1095-8312.1979.tb00056.x

    Article  Google Scholar 

  • Weiss L, Jungblut LD, Pozzi AG, O’Connell LA, Hassenklöver T, Manzini I (2020) Conservation of glomerular organization in the main olfactory bulb of anuran larvae. Front Neuroanat 14:1–8

    CAS  Google Scholar 

  • Wittmer C, Nowack C (2017) Epithelial crypts: a complex and enigmatic olfactory organ in African and South American lungfish (Lepidosireniformes, Dipnoi). J Morphol 278:791–800

    PubMed  Google Scholar 

  • Woodley SK (2014) Chemical signaling in amphibians. In: Mucignat-Caretta (ed) Neurobiology of chemical communication. CRC Press/Taylor & Francis, Boca Raton, pp 255–284

  • Yvroud M (1966) Développement de l’organe olfactif et des glandes annexes chez Alytes obstetricans Laurenti au cours de la vie larvaire et de la métamorphose. Arch Anat Microsc 55:387–410

    Google Scholar 

  • Zeiske E, Theisen B, Breucker H (1992) Structure, development, and evolutionary aspects of the peripheral olfactory system. In: Hara TJ (ed) Fish chemoreception. Springer, Netherlands, pp 13–39

Download references

Acknowledgments

We thank the editors for inviting us to contribute to this special issue.

Funding

This work was partly supported by grants from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-DFG-MINCYT 23120160100031CO and Secretaría de Ciencia y Técnica, Universidad de Buenos Aires (UBACyT) 20020170200191BA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas David Jungblut.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jungblut, L.D., Reiss, J.O. & Pozzi, A.G. Olfactory subsystems in the peripheral olfactory organ of anuran amphibians. Cell Tissue Res 383, 289–299 (2021). https://doi.org/10.1007/s00441-020-03330-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-020-03330-6

Keywords

Navigation