Log in

TMEM151A variants associated with paroxysmal kinesigenic dyskinesia

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

TMEM151A, located at 11q13.2 and encoding transmembrane protein 151A, was recently reported as causative for autosomal dominant paroxysmal kinesigenic dyskinesia (PKD). Here, through comprehensive analysis of sporadic and familial cases, we expand the clinical and mutation spectrum of PKD. In doing so, we clarify the clinical and genetic features of Chinese PKD patients harboring TMEM151A variants and further explore the relationship between TMEM151A mutations and PKD. Whole exome sequencing was performed on 26 sporadic PKD patients and nine familial PKD pedigrees without PRRT2 variants. Quantitative real-time PCR was used to assess the gene expression of frameshift mutant TMEM151A in a PKD patient. TMEM151A variants reported to date were reviewed. Four TMEM151A variants were detected in four unrelated families with 12 individuals, including a frameshift mutation [c.606_607insA (p.Val203fs)], two missense mutations [c.166G > A (p.Gly56Arg) and c.791T > C (p.Val264Ala)], and a non-pathogenic variant [c.994G > A (p.Gly332Arg)]. The monoallelic frameshift mutation [c.606_607insA (p.Val203fs)] may cause TMEM151A mRNA decay, suggesting a potential pathogenic mechanism of haploinsufficiency. Patients with TMEM151A variants had short-duration attacks and presented with dystonia. Our study provides a detailed clinical description of PKD patients with TMEM151A mutations and reports a new disease-causing mutation, expanding the known phenotypes caused by TMEM151A mutations and providing further detail about the pathoetiology of PKD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Cao L, Huang X, Wang N, Wu Z, Zhang C, Gu W, Cong S, Ma J, Wei L, Deng Y, Fang Q, Niu Q, Wang J, Wang Z, Yin Y, Tian J, Tian S, Bi H, Jiang H, Liu X, Lu Y, Sun M, Wu J, Xu E, Chen T, Chen T, Chen X, Li W, Li S, Li Q, Song X, Tang Y, Yang P, Yang Y, Zhang M, Zhang X, Zhang Y, Zhang R, Ouyang Y, Yu J, Hu Q, Ke Q, Yao Y, Zhao Z, Zhao X, Zhao G, Liang F, Cheng N, Han J, Peng R, Chen S, Tang B (2021) Recommendations for the diagnosis and treatment of paroxysmal kinesigenic dyskinesia: an expert consensus in China. Transl Neurodegener 10:7. https://doi.org/10.1186/s40035-021-00231-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen WJ, Lin Y, **ong ZQ, Wei W, Ni W, Tan GH, Guo SL, He J, Chen YF, Zhang QJ, Li HF, Lin Y, Murong SX, Xu J, Wang N, Wu ZY (2011) Exome sequencing identifies truncating mutations in PRRT2 that cause paroxysmal kinesigenic dyskinesia. Nat Genet 43:1252–1255. https://doi.org/10.1038/ng.1008

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Chen D, Zhao S, Liu G, Li H, Wu ZY (2021) Penetrance estimation of PRRT2 variants in paroxysmal kinesigenic dyskinesia and infantile convulsions. Front Med 15:877–886. https://doi.org/10.1007/s11684-021-0863-4

    Article  PubMed  Google Scholar 

  • Chen YL, Chen DF, Li HF, Wu ZY (2022) Features differ between paroxysmal kinesigenic dyskinesia patients with PRRT2 and TMEM151A variants. Mov Disord 37:608–613. https://doi.org/10.1002/mds.28939

    Article  CAS  PubMed  Google Scholar 

  • Ebrahimi-Fakhari D, Saffari A, Westenberger A, Klein C (2015) The evolving spectrum of PRRT2-associated paroxysmal diseases. Brain 138:3476–3495. https://doi.org/10.1093/brain/awv317

    Article  PubMed  Google Scholar 

  • Erro R, Sheerin UM, Bhatia KP (2014) Paroxysmal dyskinesias revisited: a review of 500 genetically proven cases and a new classification. Mov Disord 29:1108–1116. https://doi.org/10.1002/mds.25933

    Article  PubMed  Google Scholar 

  • Gardella E, Becker F, Moller RS, Schubert J, Lemke JR, Larsen LH, Eiberg H, Nothnagel M, Thiele H, Altmuller J, Syrbe S, Merkenschlager A, Bast T, Steinhoff B, Nurnberg P, Mang Y, Bakke Moller L, Gellert P, Heron SE, Dibbens LM, Weckhuysen S, Dahl HA, Biskup S, Tommerup N, Hjalgrim H, Lerche H, Beniczky S, Weber YG (2016) Benign infantile seizures and paroxysmal dyskinesia caused by an SCN8A mutation. Ann Neurol 79:428–436. https://doi.org/10.1002/ana.24580

    Article  CAS  PubMed  Google Scholar 

  • Gardiner AR, Jaffer F, Dale RC, Labrum R, Erro R, Meyer E, **romerisiou G, Stamelou M, Walker M, Kullmann D, Warner T, Jarman P, Hanna M, Kurian MA, Bhatia KP, Houlden H (2015) The clinical and genetic heterogeneity of paroxysmal dyskinesias. Brain 138:3567–3580. https://doi.org/10.1093/brain/awv310

    Article  PubMed  PubMed Central  Google Scholar 

  • Heron SE, Grinton BE, Kivity S, Afawi Z, Zuberi SM, Hughes JN, Pridmore C, Hodgson BL, Iona X, Sadleir LG, Pelekanos J, Herlenius E, Goldberg-Stern H, Bassan H, Haan E, Korczyn AD, Gardner AE, Corbett MA, Gecz J, Thomas PQ, Mulley JC, Berkovic SF, Scheffer IE, Dibbens LM (2012) PRRT2 mutations cause benign familial infantile epilepsy and infantile convulsions with choreoathetosis syndrome. Am J Hum Genet 90:152–160. https://doi.org/10.1016/j.ajhg.2011.12.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holbrook JA, Neu-Yilik G, Hentze MW, Kulozik AE (2004) Nonsense-mediated decay approaches the clinic. Nat Genet 36:801–808. https://doi.org/10.1038/ng1403

    Article  CAS  PubMed  Google Scholar 

  • Huang XJ, Wang SG, Guo XN, Tian WT, Zhan FX, Zhu ZY, Yin XM, Liu Q, Yin KL, Liu XR, Zhang Y, Liu ZG, Liu XL, Zheng L, Wang T, Wu L, Rong TY, Wang Y, Zhang M, Bi GH, Tang WG, Zhang C, Zhong P, Wang CY, Tang JG, Lu W, Zhang RX, Zhao GH, Li XH, Li H, Chen T, Li HY, Luo XG, Song YY, Tang HD, Luan XH, Zhou HY, Tang BS, Chen SD, Cao L (2020) The phenotypic and genetic spectrum of paroxysmal kinesigenic dyskinesia in China. Mov Disord 35:1428–1437. https://doi.org/10.1002/mds.28061

    Article  CAS  PubMed  Google Scholar 

  • Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Zidek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K, Kohli P, Hassabis D (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596:583–589. https://doi.org/10.1038/s41586-021-03819-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khajavi M, Inoue K, Lupski JR (2006) Nonsense-mediated mRNA decay modulates clinical outcome of genetic disease. Eur J Hum Genet 14:1074–1081. https://doi.org/10.1038/sj.ejhg.5201649

    Article  CAS  PubMed  Google Scholar 

  • Lee HY, Huang Y, Bruneau N, Roll P, Roberson ED, Hermann M, Quinn E, Maas J, Edwards R, Ashizawa T, Baykan B, Bhatia K, Bressman S, Bruno MK, Brunt ER, Caraballo R, Echenne B, Fejerman N, Frucht S, Gurnett CA, Hirsch E, Houlden H, Jankovic J, Lee WL, Lynch DR, Mohammed S, Muller U, Nespeca MP, Renner D, Rochette J, Rudolf G, Saiki S, Soong BW, Swoboda KJ, Tucker S, Wood N, Hanna M, Bowcock AM, Szepetowski P, Fu YH, Ptacek LJ (2012) Mutations in the gene PRRT2 cause paroxysmal kinesigenic dyskinesia with infantile convulsions. Cell Rep 1:2–12. https://doi.org/10.1016/j.celrep.2011.11.001

    Article  CAS  PubMed  Google Scholar 

  • Li HF, Chen YL, Zhuang L, Chen DF, Ke HZ, Luo WJ, Liu GL, Wu SN, Zhou WH, **ong ZQ, Wu ZY (2021) TMEM151A variants cause paroxysmal kinesigenic dyskinesia. Cell Discov 7:83. https://doi.org/10.1038/s41421-021-00322-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li YL, Lv WQ, Zeng YH, Chen YK, Wang XL, Yang K, Ding YL, Chen RK, Wang N, Chen WJ (2022) Exome-wide analyses in paroxysmal kinesigenic dyskinesia confirm TMEM151A as a novel causative gene. Mov Disord 37:641–643. https://doi.org/10.1002/mds.28904

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Ke H, Qian X, Wang S, Zhan F, Li Z, Tian W, Huang X, Zhang B, Cao L (2022) Clinical and genetic analyses of 150 patients with paroxysmal kinesigenic dyskinesia. J Neurol 269:4717–4728. https://doi.org/10.1007/s00415-022-11103-0

    Article  CAS  PubMed  Google Scholar 

  • Ma LY, Han L, Niu M, Chen L, Yu YZ, Feng T (2022) Screening of the TMEM151A gene in patients with paroxysmal kinesigenic dyskinesia and other movement disorders. Front Neurol 13:865690. https://doi.org/10.3389/fneur.2022.865690

    Article  PubMed  PubMed Central  Google Scholar 

  • Méneret A, Grabli D, Depienne C, Gaudebout C, Picard F, Dürr A, Lagroua I, Bouteiller D, Mignot C, Doummar D, Anheim M, Tranchant C, Burbaud P, Jedynak CP, Gras D, Steschenko D, Devos D, Billette de Villemeur T, Vidailhet M, Brice A, Roze E (2012) PRRT2 mutations: a major cause of paroxysmal kinesigenic dyskinesia in the European population. Neurology 79:170–174. https://doi.org/10.1212/WNL.0b013e31825f06c3

    Article  CAS  PubMed  Google Scholar 

  • Méneret A, Gaudebout C, Riant F, Vidailhet M, Depienne C, Roze E (2013) PRRT2 mutations and paroxysmal disorders. Eur J Neurol 20:872–878. https://doi.org/10.1111/ene.12104

    Article  PubMed  Google Scholar 

  • Mounir Alaoui O, Charbonneau PF, Prin P, Mongin M, Choquer M, Damier P, Riant F, Degos B (2023) TMEM151A as an alternative to PRRT2 in paroxysmal kinesigenic dyskinesia: About three new cases. Parkinsonism Relat Disord 108:105295. https://doi.org/10.1016/j.parkreldis.2023.105295

    Article  CAS  PubMed  Google Scholar 

  • Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, Voelkerding K, Rehm HL (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17:405–424. https://doi.org/10.1038/gim.2015.30

    Article  PubMed  PubMed Central  Google Scholar 

  • Schultz J, Copley RR, Doerks T, Ponting CP, Bork P (2000) SMART: a web-based tool for the study of genetically mobile domains. Nucleic Acids Res 28:231–234. https://doi.org/10.1093/nar/28.1.231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian WT, Huang XJ, Mao X, Liu Q, Liu XL, Zeng S, Guo XN, Shen JY, Xu YQ, Tang HD, Yin XM, Zhang M, Tang WG, Liu XR, Tang BS, Chen SD, Cao L (2018) Proline-rich transmembrane protein 2-negative paroxysmal kinesigenic dyskinesia: clinical and genetic analyses of 163 patients. Mov Disord 33:459–467. https://doi.org/10.1002/mds.27274

    Article  CAS  PubMed  Google Scholar 

  • Tian WT, Zhan FX, Liu ZH, Liu Z, Liu Q, Guo XN, Zhou ZW, Wang SG, Liu XR, Jiang H, Li XH, Zhao GH, Li HY, Tang JG, Bi GH, Zhong P, Yin XM, Liu TT, Ni RL, Zheng HR, Liu XL, Qian XH, Wu JY, Cao YW, Zhang C, Liu SH, Wu YY, Wang QF, Xu T, Hou WZ, Li ZY, Ke HY, Zhu ZY, Zheng L, Wang T, Rong TY, Wu L, Zhang Y, Fang K, Wang ZH, Zhang YK, Zhang M, Zhao YW, Tang BS, Luan XH, Huang XJ, Cao L (2022) TMEM151A variants cause paroxysmal kinesigenic dyskinesia: a large-sample study. Mov Disord 37:545–552. https://doi.org/10.1002/mds.28865

    Article  CAS  PubMed  Google Scholar 

  • Tomita H, Nagamitsu S, Wakui K, Fukushima Y, Yamada K, Sadamatsu M, Masui A, Konishi T, Matsuishi T, Aihara M, Shimizu K, Hashimoto K, Mineta M, Matsushima M, Tsujita T, Saito M, Tanaka H, Tsuji S, Takagi T, Nakamura Y, Nanko S, Kato N, Nakane Y, Niikawa N (1999) Paroxysmal kinesigenic choreoathetosis locus maps to chromosome 16p11.2-q12.1. Am J Hum Genet 65:1688–1697. https://doi.org/10.1086/302682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Vliet R, Breedveld G, de Rijk-van AJ, Brilstra E, Verbeek N, Verschuuren-Bemelmans C, Boon M, Samijn J, Diderich K, van de Laar I, Oostra B, Bonifati V, Maat-Kievit A (2012) PRRT2 phenotypes and penetrance of paroxysmal kinesigenic dyskinesia and infantile convulsions. Neurology 79:777–784. https://doi.org/10.1212/WNL.0b013e3182661fe3

    Article  CAS  PubMed  Google Scholar 

  • Varadi M, Anyango S, Deshpande M, Nair S, Natassia C, Yordanova G, Yuan D, Stroe O, Wood G, Laydon A, Zidek A, Green T, Tunyasuvunakool K, Petersen S, Jumper J, Clancy E, Green R, Vora A, Lutfi M, Figurnov M, Cowie A, Hobbs N, Kohli P, Kleywegt G, Birney E, Hassabis D, Velankar S (2022) AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res 50:D439–D444. https://doi.org/10.1093/nar/gkab1061

    Article  CAS  PubMed  Google Scholar 

  • Wang HX, Li HF, Liu GL, Wen XD, Wu ZY (2016) Mutation analysis of MR-1, SLC2A1, and CLCN1 in 28 PRRT2-negative paroxysmal kinesigenic dyskinesia patients. Chin Med J (engl) 129:1017–1021. https://doi.org/10.4103/0366-6999.180529

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Huang P, Zhu M, Fang X, Wu C, Hong D (2022) TMEM151A phenotypic spectrum includes paroxysmal kinesigenic dyskinesia with infantile convulsions. Neurol Sci 43:6095–6099. https://doi.org/10.1007/s10072-022-06208-3

    Article  PubMed  Google Scholar 

  • Wiel L, Baakman C, Gilissen D, Veltman JA, Vriend G, Gilissen C (2019) MetaDome: pathogenicity analysis of genetic variants through aggregation of homologous human protein domains. Hum Mutat 40:1030–1038. https://doi.org/10.1002/humu.23798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wirth T, Meneret A, Drouot N, Rudolf G, Lagha Boukbiza O, Chelly J, Tranchant C, Piton A, Roze E, Anheim M (2022) De novo mutation in TMEM151A and paroxysmal kinesigenic dyskinesia. Mov Disord 37:1115–1117. https://doi.org/10.1002/mds.29023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin XM, Lin JH, Cao L, Zhang TM, Zeng S, Zhang KL, Tian WT, Hu ZM, Li N, Wang JL, Guo JF, Wang RX, **a K, Zhang ZH, Yin F, Peng J, Liao WP, Yi YH, Liu JY, Yang ZX, Chen Z, Mao X, Yan XX, Jiang H, Shen L, Chen SD, Zhang LM, Tang BS (2018) Familial paroxysmal kinesigenic dyskinesia is associated with mutations in the KCNA1 gene. Hum Mol Genet 27:625–637. https://doi.org/10.1093/hmg/ddx430

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge all of the patients and their families for their participation in our study.

Funding

This study was funded by the National Natural Science Foundation of China (NO.81801295 and 81501248), the Wisdom Accumulation and Talent Cultivation Project of the Third xiangya hospital of Central South University (YX202205), the Science and Technology Innovation Program of Hunan Province (2021RC3031), the Natural Foundation of **njiang Uygur Autonomous Region (No.2018D01C225), the Scientific Research Program of Hunan Provincial Health Commission (20220503347), and the Open Research Program of Key Laboratory of Regenerative Biology of Chinese Academy of Sciences (KLRB202010).

Author information

Authors and Affiliations

Authors

Contributions

QXZ, CYM, and DL contributed to conception and design of the study. QX Z and HL H wrote the first draft of the manuscript. HL H revised the manuscript, while QX Z and FH assisted in the preparation of the figures. FH carried out the experimental design and data analysis later. QXZ, CYM collected the clinical data. XYL, BX and GLL supervised the study. FH wrote and revised the final version of the paper. HLH, ZS and DL revised the manuscript and gave final approval of the version to be published. All authors contributed to revising the manuscript and read through and approved the submitted version.

Corresponding authors

Correspondence to Cai yu Ma or Ding Liu.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Human and animal rights

This study involving human participants was reviewed and approved by the Institutional Review Board of the Third **angya Hospital of Central South University (NO.22254).

Informed consent

All patients or their participants’ legal guardian/next of kin have signed an informed consent form.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 123 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H.l., Zhang, Q.x., Huang, F. et al. TMEM151A variants associated with paroxysmal kinesigenic dyskinesia. Hum. Genet. 142, 1017–1028 (2023). https://doi.org/10.1007/s00439-023-02535-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-023-02535-3

Navigation