Log in

Compensatory epistasis explored by molecular dynamics simulations

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

A non-negligible proportion of human pathogenic variants are known to be present as wild type in at least some non-human mammalian species. The standard explanation for this finding is that molecular mechanisms of compensatory epistasis can alleviate the mutations’ otherwise pathogenic effects. Examples of compensated variants have been described in the literature but the interacting residue(s) postulated to play a compensatory role have rarely been ascertained. In this study, the examination of five human X-chromosomally encoded proteins (FIX, GLA, HPRT1, NDP and OTC) allowed us to identify several candidate compensated variants. Strong evidence for a compensated/compensatory pair of amino acids in the coagulation FIXa protein (involving residues 270 and 271) was found in a variety of mammalian species. Both amino acid residues are located within the 60-loop, spatially close to the 39-loop that performs a key role in coagulation serine proteases. To understand the nature of the underlying interactions, molecular dynamics simulations were performed. The predicted conformational change in the 39-loop consequent to the Glu270Lys substitution (associated with hemophilia B) appears to impair the protein’s interaction with its substrate but, importantly, such steric hindrance is largely mitigated in those proteins that carry the compensatory residue (Pro271) at the neighboring amino acid position.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

taken from the MD simulations studies on the different FIXa protein variants and the catalytic domain from the crystallographic structure

Fig. 9

Similar content being viewed by others

Code availability

Not applicable.

References

  • Azevedo L, Carneiro J, van Asch B, Moleirinho A, Pereira F, Amorim A (2009) Epistatic interactions modulate the evolution of mammalian mitochondrial respiratory complex components. BMC Genom 10:266. https://doi.org/10.1186/1471-2164-10-266

    Article  CAS  Google Scholar 

  • Azevedo L, Mort M, Costa AC, Silva RM, Quelhas D, Amorim A, Cooper DN (2016) Improving the in silico assessment of pathogenicity for compensated variants. Eur J Hum Genet 25:2–7. https://doi.org/10.1038/ejhg.2016.129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242. https://doi.org/10.1093/nar/28.1.235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castellana S, Biagini T, Petrizzelli F, Parca L, Panzironi N, Caputo V, Vescovi AL, Carella M, Mazza T (2021) MitImpact 3: modeling the residue interaction network of the respiratory chain subunits. Nucleic Acids Res 49:D1282–D1288. https://doi.org/10.1093/nar/gkaa1032

    Article  PubMed  Google Scholar 

  • Chimpanzee Sequencing and Analysis Consortium (2005) Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437:69–87. https://doi.org/10.1038/nature04072

    Article  CAS  Google Scholar 

  • Cunningham F, Achuthan P, Akanni W, Allen J, Amode MR, Armean IM, Bennett R, Bhai J, Billis K, Boddu S, Cummins C, Davidson C, Dodiya KJ, Gall A, Giron CG, Gil L, Grego T, Haggerty L, Haskell E, Hourlier T, Izuogu OG, Janacek SH, Juettemann T, Kay M, Laird MR, Lavidas I, Liu Z, Loveland JE, Marugan JC, Maurel T, McMahon AC, Moore B, Morales J, Mudge JM, Nuhn M, Ogeh D, Parker A, Parton A, Patricio M, Abdul Salam AI, Schmitt BM, Schuilenburg H, Sheppard D, Sparrow H, Stapleton E, Szuba M, Taylor K, Threadgold G, Thormann A, Vullo A, Walts B, Winterbottom A, Zadissa A, Chakiachvili M, Frankish A, Hunt SE, Kostadima M, Langridge N, Martin FJ, Muffato M, Perry E, Ruffier M, Staines DM, Trevanion SJ, Aken BL, Yates AD, Zerbino DR, Flicek P (2019) Ensembl 2019. Nucleic Acids Res 47:D745–D751. https://doi.org/10.1093/nar/gky1113

    Article  CAS  PubMed  Google Scholar 

  • de Beer TAP, Laskowski RA, Parks SL, Sipos B, Goldman N, Thornton JM (2013) Amino acid changes in disease-associated variants differ radically from variants observed in the 1000 Genomes Project dataset. PLoS Comput Biol 9:e1003382. https://doi.org/10.1371/journal.pcbi.1003382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira P, Sousa SF, Fernandes PA, Ramos MJ (2017) Improving the catalytic power of the DszD enzyme for the biodesulfurization of crude oil and derivatives. Chemistry 23:17231–17241. https://doi.org/10.1002/chem.201704057

    Article  CAS  PubMed  Google Scholar 

  • Ferrer-Costa C, Orozco M, de la Cruz X (2007) Characterization of compensated mutations in terms of structural and physico-chemical properties. J Mol Biol 365:249–256. https://doi.org/10.1016/j.jmb.2006.09.053

    Article  CAS  PubMed  Google Scholar 

  • Genin E, Feingold J, Clerget-Darpoux F (2008) Identifying modifier genes of monogenic disease: strategies and difficulties. Hum Genet 124:357–368. https://doi.org/10.1007/s00439-008-0560-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Rhesus Macaque Genome Sequencing and Analysis Consortium, Gibbs RA, Rogers J, Katze MG, Bumgarner R, Weinstock GM, Mardis ER, Remington KA, Strausberg RL, Venter JC, Wilson RK, Batzer MA, Bustamante CD, Eichler EE, Hahn MW, Hardison RC, Makova KD, Miller W, Milosavljevic A, Palermo RE, Siepel A, Sikela JM, Attaway T, Bell S, Bernard KE, Buhay CJ, Chandrabose MN, Dao M, Davis C, Delehaunty KD, Ding Y, Dinh HH, Dugan-Rocha S, Fulton LA, Gabisi RA, Garner TT, Godfrey J, Hawes AC, Hernandez J, Hines S, Holder M, Hume J, Jhangiani SN, Joshi V, Khan ZM, Kirkness EF, Cree A, Fowler RG, Lee S, Lewis LR, Li Z, Liu YS, Moore SM, Muzny D, Nazareth LV, Ngo DN, Okwuonu GO, Pai G, Parker D, Paul HA, Pfannkoch C, Pohl CS, Rogers YH, Ruiz SJ, Sabo A, Santibanez J, Schneider BW, Smith SM, Sodergren E, Svatek AF, Utterback TR, Vattathil S, Warren W, White CS, Chinwalla AT, Feng Y, Halpern AL, Hillier LW, Huang X, Minx P, Nelson JO, Pepin KH, Qin X, Sutton GG, Venter E, Walenz BP, Wallis JW, Worley KC, Yang SP, Jones SM, Marra MA, Rocchi M, Schein JE, Baertsch R, Clarke L, Csuros M, Glasscock J, Harris RA, Havlak P et al (2007) Evolutionary and biomedical insights from the rhesus macaque genome. Science 316:222–234. https://doi.org/10.1126/science.1139247

    Article  CAS  Google Scholar 

  • Grant BJ, Rodrigues AP, ElSawy KM, McCammon JA, Caves LS (2006) Bio3d: an R package for the comparative analysis of protein structures. Bioinformatics 22:2695–2696. https://doi.org/10.1093/bioinformatics/btl461

    Article  CAS  PubMed  Google Scholar 

  • Guce AI, Clark NE, Rogich JJ, Garman SC (2011) The molecular basis of pharmacological chaperoning in human alpha-galactosidase. Chem Biol 18:1521–1526. https://doi.org/10.1016/j.chembiol.2011.10.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson DJ, Langdown J, Huntington JA (2010) Molecular basis of factor IXa recognition by heparin-activated antithrombin revealed by a 1.7-Å structure of the ternary complex. Proc Natl Acad Sci USA 107:645–650. https://doi.org/10.1073/pnas.0910144107

    Article  PubMed  Google Scholar 

  • Jordan DM, Frangakis SG, Golzio C, Cassa CA, Kurtzberg J, Task Force for Neonatal G, Davis EE, Sunyaev SR, Katsanis N (2015) Identification of cis-suppression of human disease mutations by comparative genomics. Nature 524:225–229. https://doi.org/10.1038/nature14497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim D, Han SK, Lee K, Kim I, Kong J, Kim S (2019) Evolutionary coupling analysis identifies the impact of disease-associated variants at less-conserved sites. Nucleic Acids Res 47:e94–e94. https://doi.org/10.1093/nar/gkz536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kondrashov AS, Sunyaev S, Kondrashov FA (2002) Dobzhansky-Muller incompatibilities in protein evolution. Proc Natl Acad Sci USA 99:14878–14883. https://doi.org/10.1073/pnas.232565499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Suleski MP, Markov GJ, Lawrence S, Marco A, Filipski AJ (2009) Positional conservation and amino acids shape the correct diagnosis and population frequencies of benign and damaging personal amino acid mutations. Genome Res 19:1562–1569. https://doi.org/10.1101/gr.091991.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Stecher G, Suleski M, Hedges SB (2017) TimeTree: a resource for timelines, timetrees, and divergence times. Mol Biol Evol 34:1812–1819. https://doi.org/10.1093/molbev/msx116

    Article  CAS  PubMed  Google Scholar 

  • Law RH, Zhang Q, McGowan S, Buckle AM, Silverman GA, Wong W, Rosado CJ, Langendorf CG, Pike RN, Bird PI, Whisstock JC (2006) An overview of the serpin superfamily. Genome Biol 7:216. https://doi.org/10.1186/gb-2006-7-5-216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loytynoja A, Goldman N (2010) webPRANK: a phylogeny-aware multiple sequence aligner with interactive alignment browser. BMC Bioinform 11:579. https://doi.org/10.1186/1471-2105-11-579

    Article  CAS  Google Scholar 

  • Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling C (2015) ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput 11:3696–3713. https://doi.org/10.1021/acs.jctc.5b00255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marin O, Aguirre J, de la Cruz X (2019) Compensated pathogenic variants in coagulation factors VIII and IX present complex map** between molecular impact and hemophilia severity. Sci Rep 9:9538. https://doi.org/10.1038/s41598-019-45916-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller MP, Kumar S (2001) Understanding human disease mutations through the use of interspecific genetic variation. Hum Mol Genet 10:2319–2328. https://doi.org/10.1093/hmg/10.21.2319

    Article  CAS  PubMed  Google Scholar 

  • Olsson MH, Sondergaard CR, Rostkowski M, Jensen JH (2011) PROPKA3: consistent treatment of internal and surface residues in empirical pKa predictions. J Chem Theory Comput 7:525–537. https://doi.org/10.1021/ct100578z

    Article  CAS  PubMed  Google Scholar 

  • O’Rourke KF, Gorman SD, Boehr DD (2016) Biophysical and computational methods to analyze amino acid interaction networks in proteins. Comput Struct Biotechnol J 14:245–251. https://doi.org/10.1016/j.csbj.2016.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shapovalov MV, Dunbrack RL Jr (2011) A smoothed backbone-dependent rotamer library for proteins derived from adaptive Kernel density estimates and regressions. Structure 19:844–858. https://doi.org/10.1016/j.str.2011.03.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stenson PD, Mort M, Ball EV, Chapman M, Evans K, Azevedo L, Hayden M, Heywood S, Millar DS, Phillips AD, Cooper DN (2020) The Human Gene Mutation Database (HGMD((R))): optimizing its use in a clinical diagnostic or research setting. Hum Genet 139:1197–1207. https://doi.org/10.1007/s00439-020-02199-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Subramanian S, Kumar S (2006) Evolutionary anatomies of positions and types of disease-associated and neutral amino acid mutations in the human genome. BMC Genom 7:306. https://doi.org/10.1186/1471-2164-7-306

    Article  CAS  Google Scholar 

  • Suriano G, Azevedo L, Novais M, Boscolo B, Seruca R, Amorim A, Ghibaudi EM (2007) In vitro demonstration of intra-locus compensation using the ornithine transcarbamylase protein as model. Hum Mol Genet 16:2209–2214. https://doi.org/10.1093/hmg/ddm172

    Article  CAS  PubMed  Google Scholar 

  • Vadivel K, Schreuder HA, Liesum A, Schmidt AE, Goldsmith G, Bajaj SP (2019) Sodium-site in serine protease domain of human coagulation factor IXa: evidence from the crystal structure and molecular dynamics simulations study. J Thromb Haemost 17:574–584. https://doi.org/10.1111/jth.14401

    Article  PubMed  PubMed Central  Google Scholar 

  • van Leeuwen J, Pons C, Mellor JC, Yamaguchi TN, Friesen H, Koschwanez J, Usaj MM, Pechlaner M, Takar M, Usaj M, VanderSluis B, Andrusiak K, Bansal P, Baryshnikova A, Boone CE, Cao J, Cote A, Gebbia M, Horecka G, Horecka I, Kuzmin E, Legro N, Liang W, van Lieshout N, McNee M, San Luis BJ, Shaeri F, Shuteriqi E, Sun S, Yang L, Youn JY, Yuen M, Costanzo M, Gingras AC, Aloy P, Oostenbrink C, Murray A, Graham TR, Myers CL, Andrews BJ, Roth FP, Boone C (2016) Exploring genetic suppression interactions on a global scale. Science 354:aag0839. https://doi.org/10.1126/science.aag0839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wacey AI, Krawczak M, Kakkar VV, Cooper DN (1994) Determinants of the factor IX mutational spectrum in haemophilia B: an analysis of missense mutations using a multi-domain molecular model of the activated protein. Hum Genet 94:594–608. https://doi.org/10.1007/BF00206951

    Article  CAS  PubMed  Google Scholar 

  • Mouse Genome Sequencing Consortium, Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, Agarwala R, Ainscough R, Alexandersson M, An P, Antonarakis SE, Attwood J, Baertsch R, Bailey J, Barlow K, Beck S, Berry E, Birren B, Bloom T, Bork P, Botcherby M, Bray N, Brent MR, Brown DG, Brown SD, Bult C, Burton J, Butler J, Campbell RD, Carninci P, Cawley S, Chiaromonte F, Chinwalla AT, Church DM, Clamp M, Clee C, Collins FS, Cook LL, Copley RR, Coulson A, Couronne O, Cuff J, Curwen V, Cutts T, Daly M, David R, Davies J, Delehaunty KD, Deri J, Dermitzakis ET, Dewey C, Dickens NJ, Diekhans M, Dodge S, Dubchak I, Dunn DM, Eddy SR, Elnitski L, Emes RD, Eswara P, Eyras E, Felsenfeld A, Fewell GA, Flicek P, Foley K, Frankel WN, Fulton LA, Fulton RS, Furey TS, Gage D, Gibbs RA, Glusman G, Gnerre S, Goldman N, Goodstadt L, Grafham D, Graves TA, Green ED, Gregory S, Guigo R, Guyer M, Hardison RC, Haussler D, Hayashizaki Y, Hillier LW, Hinrichs A, Hlavina W, Holzer T, Hsu F, Hua A, Hubbard T, Hunt A, Jackson I, Jaffe DB, Johnson LS, Jones M, Jones TA, Joy A, Kamal M et al (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562. https://doi.org/10.1038/nature01262

    Article  CAS  Google Scholar 

  • Xue Y, Prado-Martinez J, Sudmant PH, Narasimhan V, Ayub Q, Szpak M, Frandsen P, Chen Y, Yngvadottir B, Cooper DN, de Manuel M, Hernandez-Rodriguez J, Lobon I, Siegismund HR, Pagani L, Quail MA, Hvilsom C, Mudakikwa A, Eichler EE, Cranfield MR, Marques-Bonet T, Tyler-Smith C, Scally A (2015) Mountain gorilla genomes reveal the impact of long-term population decline and inbreeding. Science 348:242–245. https://doi.org/10.1126/science.aaa3952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Rezaie AR (2013) Residues of the 39-loop restrict the plasma inhibitor specificity of factor IXa. J Biol Chem 288:12692–12698. https://doi.org/10.1074/jbc.M113.459347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yates AD, Achuthan P, Akanni W, Allen J, Allen J, Alvarez-Jarreta J, Amode MR, Armean IM, Azov AG, Bennett R, Bhai J, Billis K, Boddu S, Marugan JC, Cummins C, Davidson C, Dodiya K, Fatima R, Gall A, Giron CG, Gil L, Grego T, Haggerty L, Haskell E, Hourlier T, Izuogu OG, Janacek SH, Juettemann T, Kay M, Lavidas I, Le T, Lemos D, Martinez JG, Maurel T, McDowall M, McMahon A, Mohanan S, Moore B, Nuhn M, Oheh DN, Parker A, Parton A, Patricio M, Sakthivel MP, Salam AA, Schmitt BM, Schuilenburg H, Sheppard D, Sycheva M, Szuba M, Taylor K, Thormann A, Threadgold G, Vullo A, Walts B, Winterbottom A, Zadissa A, Chakiachvili M, Flint B, Frankish A, Hunt SE, Kostadima M, Langridge N, Loveland JE, Martin FJ, Morales J, Mudge JM, Muffato M, Perry E, Ruffier M, Trevanion SJ, Cunningham F, Howe KL, Zerbino DR, Flicek P (2020) Ensembl 2020. Nucleic Acids Res 48:D682–D688. https://doi.org/10.1093/nar/gkz966

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Pei Z, Krawczak M, Ball EV, Mort M, Kehrer-Sawatzki H, Cooper DN (2010) Triangulation of the human, chimpanzee, and Neanderthal genome sequences identifies potentially compensated mutations. Hum Mutat 31:1286–1293. https://doi.org/10.1002/humu.21389

    Article  PubMed  Google Scholar 

  • Zhang G, Pei Z, Ball EV, Mort M, Kehrer-Sawatzki H, Cooper DN (2011) Cross-comparison of the genome sequences from human, chimpanzee, Neanderthal and a Denisovan hominin identifies novel potentially compensated mutations. Hum Genom 5:453–484. https://doi.org/10.1186/1479-7364-5-5-453

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Fundo Europeu de Desenvolvimento Regional (FEDER) through the COMPETE 2020—Operational Programme for Competitiveness and Internationalization, Portugal 2020 and by Foundation for Science and Technology (FCT) [POCI-01-0145-FEDER-007274, POCI-01-0145-FEDER-29723]; Foundation for Science and Technology [UIDB/04423/2020, UIDP/04423/2020, UIDP/04378/2020, UIDB/04378/2020, SFRH/BD/137925/2018 to C.S.]; Infraestrutura Nacional de Computação Distribuída (INCD) [01/SAICT/2016 number 022153, CPCA/A00/7140/2020, CPCA/A00/7145/2020] through funds from Foundation for Science and Technology and Fundo Europeu de Desenvolvimento Regional; Foundation for Science and Technology [under the transitional rule of Decree Law 57/2016, amended by Law 57/2017 to J.C.]; Foundation for Science and Technology [2020.01423.CEECIND to S.S.].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sérgio F. Sousa or Luísa Azevedo.

Ethics declarations

Conflict of interest

The authors are unaware of any conflict of interest.

Availability of data

Sequences used in this study were retrieved from the Ensembl Genome Browser (https://www.ensembl.org) and are shown in Supplementary Table S1. Human disease-causing missense variants were retrieved from HGMD (http://www.hgmd.cf.ac.uk). The crystal structure of FIXa (6MV4) and GLA (3S5Z) were retrieved from the Protein Data Bank (PDB) (https://www.rcsb.org).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 589 KB)

Supplementary file2 (PDF 873 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serrano, C., Teixeira, C.S.S., Cooper, D.N. et al. Compensatory epistasis explored by molecular dynamics simulations. Hum Genet 140, 1329–1342 (2021). https://doi.org/10.1007/s00439-021-02307-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-021-02307-x

Navigation