Log in

Sources and predictors of resolvable indel polymorphism assessed using rice as a model

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

The principal sources of genetic variation that can be assayed with restriction enzymes are base substitutions and insertions/deletions (indels). The likelihood of detecting indels as restriction fragment length polymorphisms (RFLPs) is determined by the size and frequency of the indels, and the ability to resolve small indels as RFLPs is limited by the distribution of restriction fragment sizes. In this study, we use aligned sequences from the indica and japonica subspecies of rice ( Oryza sativa L.) to quantify and compare the ability of restriction enzymes to detect indels. We look specifically at two abundant transposable element-derived indel sources: miniature inverted repeat transposable elements (MITEs) and long terminal repeat (LTR) retroelements. From this analysis we conclude that indels rather than base substitutions are the prevailing source of the polymorphism detected in rice. We show that, although MITE derived indels are more abundant than LTR-retroelement derived indels, LTR-retroelements have a greater capacity to generate visible restriction fragment length polymorphism because of their larger size. We find that the variation in the detectability of indels among restriction enzymes can be explained by differences in the frequency and dispersion of their restriction sites in the genome. The parameters that describe the fragment size distributions obtained with the restriction enzymes are highly correlated across the sequenced genomes of rice, Arabidopsis and human, with the exception of some extreme deviations in frequency for particular recognition sequences corresponding to variations in the levels and modes of DNA methylation in the three disparate organisms. Thus, we can predict the relative ability of a restriction enzyme to detect indels derived from a specific source based on the distribution of restriction fragment sizes, even when this is estimated for a distantly related genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2A, B
Fig. 3
Fig. 4A–D

Similar content being viewed by others

References

  • Akagi H, Yokozeki Y, Inagaki A, Mori K, Fujimura T (2001) Micron, a microsatellite-targeting transposable element in the rice genome. Mol Genet Genomics 266:471–480

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Bernaola-Galvan P, Roman-Roldan R, Oliver JL (1996) Compositional segmentation and long-range fractal correlations in DNA sequences. Physical Rev E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics 53:5181–5189

    Google Scholar 

  • Bird AP (1980) DNA methylation and the frequency of CpG in animal DNA. Nucleic Acids Res 8:1499–1504

    CAS  PubMed  Google Scholar 

  • Bishop DT, Williamson JA, Skolnick MH (1983) A model for restriction fragment length distributions. Am J Hum Genet 35:795–815

    CAS  PubMed  Google Scholar 

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331

    CAS  PubMed  Google Scholar 

  • Bureau TE, Wessler SR (1992) Tourist: a large family of small inverted repeat elements frequently associated with maize genes. Plant Cell 4:1283–1294

    CAS  PubMed  Google Scholar 

  • Bureau TE, Ronald PC, Wessler SR (1996) A computer-based systematic survey reveals the predominance of small inverted-repeat elements in wild-type rice genes. Proc Natl Acad Sci USA 93:8524–8529

    CAS  PubMed  Google Scholar 

  • Feng Q, et al (2002) Sequence and analysis of rice chromosome 4. Nature 420:316–320

    Article  CAS  PubMed  Google Scholar 

  • Houck CM, Rinehart FP, Schmid CW (1979) A ubiquitous family of repeated DNA sequences in the human genome. J Mol Biol 132:289–306

    CAS  PubMed  Google Scholar 

  • Innan H, Terauchi R, Kahl G, Tajima F (1999) A method for estimating nucleotide diversity from AFLP data. Genetics 151:1157–1164

    CAS  PubMed  Google Scholar 

  • Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity arrays: a solid state technology for sequence information independent genoty**. Nucleic Acids Res 29:E25

    Article  CAS  PubMed  Google Scholar 

  • Jiang N, Bao Z, Zhang X, Hirochika H, Eddy SR, McCouch SR, Wessler SR (2003) An active DNA transposon family in rice. Nature 421:163–167

    Article  CAS  PubMed  Google Scholar 

  • Kidwell MG (1983) Evolution of hybrid dysgenesis determinants in Drosophila melanogaster. Proc Natl Acad Sci USA 80:1655–1659

    CAS  PubMed  Google Scholar 

  • Kikuchi K, Terauchi K, Wada M, Hirano HY (2003) The plant MITE m** is mobilized in anther culture. Nature 421:167–170

    Article  CAS  PubMed  Google Scholar 

  • Kunz M, Radl Z (1998) Distributions of distances in information strings. J Chem Inf Comput Sci 38:374–378

    Article  CAS  PubMed  Google Scholar 

  • Lenoir A, Lavie L, Prieto JL, Goubely C, Cote JC, Pelissier T, Deragon JM (2001) The evolutionary origin and genomic organization of SINEs in Arabidopsis thaliana. Mol Biol Evol 18:2315–2322

    CAS  PubMed  Google Scholar 

  • Lindroth AM, Cao X, Jackson JP, Zilberman D, McCallum CM, Henikoff S, Jacobsen SE (2001) Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation. Science 292:2077–2080

    CAS  PubMed  Google Scholar 

  • Mao L, Wood TC, Yu Y, Budiman MA, Tomkins J, Woo S, Sasinowski M, Presting G, Frisch D, Goff S, Dean RA, Wing RA (2000) Rice transposable elements: a survey of 73,000 sequence-tagged-connectors. Genome Res 10:982–990

    CAS  PubMed  Google Scholar 

  • Matsuoka Y, Vigouroux Y, Googmann MM, Sanchez GJ, Buckler E, Doebley J (2002) A single domestication for maize shown by multilocus microsatellite genoty**. Proc Natl Acad Sci USA 99:6080–6084

    CAS  PubMed  Google Scholar 

  • McCarthy EM, Liu J, Lizhi G, McDonald JF (2002) Long terminal repeat retrotransposons of Oryza sativa. Genome Biol 3:research0053.1-0053.11

    Article  PubMed  Google Scholar 

  • McCouch SR, Kochert G, Yu ZH, Wang ZY, Khush GS (1988) Molecular map** of rice chromosomes. Theor Appl Genet 76:815–829

    CAS  Google Scholar 

  • Mochizuki K, Ohtsubo H, Hirano H, Sano Y, Ohtsubo E (1993) Classification and relationships of rice strains with AA genome by identification of transposable elements at nine loci. Jpn J Genet 68:205–217

    CAS  PubMed  Google Scholar 

  • Myers EW, Miller W (1988) Optimal alignments in linear space. Comput Appl Biosci 4:11–7

    CAS  PubMed  Google Scholar 

  • Nagano H, Kunii M, Azuma T, Kishima Y, Sano Y (2002) Characterization of the repetitive sequences in a 200-kb region around the rice waxy locus: diversity of transposable elements and presence of veiled repetitive sequences. Genes Genet Syst 77:69–79

    Article  CAS  PubMed  Google Scholar 

  • Nakazaki T, Okumoto Y, Horibata A, Yamahira S, Teraishi M, Nishida H, Inoue H, Tanisaka T (2003) Mobilization of a transposon in the rice genome. Nature 421:170–172

    Article  CAS  PubMed  Google Scholar 

  • Nei M, Miller JC (1990) A simple method for estimating average number of nucleotide substitutions within and between populations from restriction data. Genetics 125:873–879

    CAS  PubMed  Google Scholar 

  • Rice P, Longden I, Bleasby A (2000) EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet 16:276–277

    PubMed  Google Scholar 

  • Roberts RJ, Vincze T, Posfai J, Macelis D (2003) REBASE: restriction enzymes and methyltransferases. Nucleic Acids Res 31:418–420

    Article  CAS  PubMed  Google Scholar 

  • SanMiguel P, Gaut BS, Tikhonov A, Nakajima Y, Bennetzen JL (1998) The paleontology of intergene retrotransposons of maize. Nat Genet 20:43–45

    CAS  PubMed  Google Scholar 

  • Second G (1982) Origin of the gene diversity of cultivated rice ( Oryza sativa L.): study of the polymorphism scored at 40 isoenzyme loci. Jpn J Genet 57:25–57

    Google Scholar 

  • Tarchini R, Biddle P, Wineland R, Tingey S, Rafalski A (2000) The complete sequence of 340 kb of DNA around the rice Adh1-adh2 region reveals interrupted colinearity with maize chromosome 4. Plant Cell 12:381–391

    CAS  PubMed  Google Scholar 

  • Turcotte K, Srinivasan S, Bureau T (2001) Survey of transposable elements from rice genomic sequences. Plant J 25:169–179

    CAS  PubMed  Google Scholar 

  • Upholt WB (1977) Estimation of DNA divergence from comparison of restriction endonuclease digests. Nucleic Acids Res 4:1257–1265

    CAS  PubMed  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    CAS  PubMed  Google Scholar 

  • Voss RF (1992) Evolution of long-range fractal correlations and 1/f noise in DNA base sequences. Phys Rev Lett 68:3805–3808

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs. T. Brutnell, N. Jiang, and S. R. Wessler for critical reading of the manuscript. We also thank K.Y. Chang for programming assistance, and L. Swales for manuscript formatting. This material is based upon work supported by the National Science Foundation under Grant No. 0077709, and by a graduate assistantship to JD Edwards provided by the Cornell Plant Cell and Molecular Biology Program (DOE/NSF/USDA Interagency Training Grant)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. McCouch.

Additional information

Communicated by M.-A. Grandbastien

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edwards, J.D., Lee, V.M. & McCouch, S.R. Sources and predictors of resolvable indel polymorphism assessed using rice as a model. Mol Genet Genomics 271, 298–307 (2004). https://doi.org/10.1007/s00438-004-0979-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-004-0979-7

Keywords

Navigation