Log in

Rodent control programmes can integrate Echinococcus multilocularis surveillance by facilitating parasite genoty**: the case of Arvicola terrestris voles screening in France

  • Helminthology - Short Communication
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The tapeworm Echinococcus multilocularis is the causative agent of alveolar echinococcosis, the most serious parasitic disease for humans in Europe. In Europe, the E. multilocularis lifecycle is based on a prey–predator relationship between the red fox and small rodents. Over the last three decades, the surveillance of E. multilocularis infection in red foxes has led to the description of a wider distribution pattern across Europe. France constitutes the current European western border, but only the north-eastern half of the country is considered endemic. The red fox is the host mainly targeted in E. multilocularis surveillance programmes, but surveys targeting small rodents may be useful for obtaining molecular data, especially when the time-consuming trap** is already carried out in dedicated pest-control programmes. Here, we screened for parasitic lesions in the livers of 1238 Arvicola terrestris voles originating from the historical, but neglected focal area located in central France (Auvergne region) and from Hautes-Alpes, a recently identified endemic department in south-eastern France. This screening identified six voles infected with E. multilocularis in Hautes-Alpes and none in Puy-de-Dôme (Auvergne region) after molecular confirmation. The absence of infected rodents from Puy-de-Dôme can be mainly explained by the generally low prevalence reported in intermediate hosts. The infected Hautes-Alpes samples come all from the same trap** site situated at around 5 km from one of the three fox faecal samples with E. multilocularis DNA collected 15 years prior, thereby confirming the existence and persistence of the E. multilocularis lifecycle in the area. All the rodent E. multilocularis samples from Hautes-Alpes showed the same EmsB microsatellite marker profile. This profile has previously been described in Europe only in the Jura department (central eastern France), located at least 180 km further north. Successive migrations of infected foxes from the historical focal area, including from Jura, to Hautes-Alpes may explain the detection of the parasite in A. terrestris in Hautes-Alpes. Existing trap** efforts in areas where farmers trap A. terrestris for surveillance and pest control can be an effective complement to sampling foxes or fox faeces to obtain E. multilocularis molecular profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Beck R, Mihaljevic Z, Brezak R, Bosnic S, Jankovic IL, Deplazes P (2018) First detection of Echinococcus multilocularis in Croatia. Parasitol Res 117(2):617–621. https://doi.org/10.1007/s00436-017-5732-3

    Article  PubMed  Google Scholar 

  • Bowles J, Blair D, McManus DP (1992) Genetic variants within the genus Echinococcus identified by mitochondrial DNA sequencing. Mol Biochem Parasitol 54(2):165–173. https://doi.org/10.1016/0166-6851(92)90109-W

    Article  CAS  PubMed  Google Scholar 

  • Combes B, Comte S, Raton V, Raoul F, Boué F, Umhang G, Favier S, Dunoyer C, Woronoff-Rehn N, Giraudoux P (2013) Expansion géographique du parasite Echinococcus multilocularis chez le renard en France. Bull Epidémiol Santé Animale – Alimen 57:16–18

    Google Scholar 

  • Combes B, Comte S, Raton V, Raoul F, Boué F, Umhang G, Favier S, Dunoyer C, Woronoff N, Giraudoux P (2012) Westward spread of Echinococcus multilocularis in foxes, France, 2005–2010. Emerg Infect Dis 18(12):2059–2062. https://doi.org/10.3201/eid1812.120219

    Article  PubMed  PubMed Central  Google Scholar 

  • Eckert J, Conraths FJ, Tackmann K (2000) Echinococcosis: an emerging or re-emerging zoonosis? Int J Parasitol 30(12-13):1283–1294

    Article  CAS  PubMed  Google Scholar 

  • Eckert J, Gemmell MA, Meslin FX, Pawlowski ZS (2001) WHO/OIE Manual on echinococcosis in humans and animals: a public health problem of global concern. O.I.E. - O.M.S, Paris

    Google Scholar 

  • Giraudoux P, Pierre D, Takahashi K, Francis R, Jean PQ, Philip C, Dominique V (2002) Transmission ecology of Echinococcus multilocularis in wildlife: what can be learned from comparative studies and multiscale approaches?

    Google Scholar 

  • Gottstein B, Stojkovic M, Vuitton DA, Millon L, Marcinkute A, Deplazes P (2015) Threat of alveolar echinococcosis to public health – a challenge for Europe. Trends Parasitol 31(9):407–412. https://doi.org/10.1016/j.pt.2015.06.001

    Article  PubMed  Google Scholar 

  • Guerra D, Hegglin D, Bacciarini L, Schnyder M, Deplazes P (2014) Stability of the southern European border of Echinococcus multilocularis in the Alps: evidence that Microtus arvalis is a limiting factor. Parasitology 141(12):1593–1602. https://doi.org/10.1017/S0031182014000730

    Article  Google Scholar 

  • Isaksson M, Hagstrom A, Armua-Fernandez M, Wahlstrom H, Agren E, Miller A, Holmberg A, Lukacs M, Casulli A, Deplazes P, Juremalm M (2014) A semi-automated magnetic capture probe based DNA extraction and real-time PCR method applied in the Swedish surveillance of Echinococcus multilocularis in red fox (Vulpes vulpes) faecal samples. Parasit Vectors 7(1):583. https://doi.org/10.1186/s13071-014-0583-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knapp J, Bart JM, Glowatzki ML, Ito A, Gerard S, Maillard S, Piarroux R, Gottstein B (2007) Assessment of use of microsatellite polymorphism analysis for improving spatial distribution tracking of Echinococcus multilocularis. J Clin Microbiol 45(9):2943–2950. https://doi.org/10.1128/JCM.02107-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knapp J, Damy S, Brillaud J, Tissot JD, Navion J, Melior R, Afonso E, Hormaz V, Gottstein B, Umhang G, Casulli A, Dadeau F, Millon L, Raoul F (2017) EWET: data collection and interface for the genetic analysis of Echinococcus multilocularis based on EmsB microsatellite. PLoS One 12(10):e0183849. https://doi.org/10.1371/journal.pone.0183849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knapp J, Staebler S, Bart JM, Stien A, Yoccoz NG, Drogemuller C, Gottstein B, Deplazes P (2012) Echinococcus multilocularis in Svalbard, Norway: microsatellite genoty** to investigate the origin of a highly focal contamination. Infect Genet Evol 12(6):1270–1274. https://doi.org/10.1016/j.meegid.2012.03.008

    Article  CAS  PubMed  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • Massolo A, Valli D, Wassermann M, Cavallero S, D'Amelio S, Meriggi A, Torretta E, Serafini M, Casulli A, Zambon L, Boni CB, Ori M, Romig T, Macchioni F (2018) Unexpected Echinococcus multilocularis infections in shepherd dogs and wolves in south-western Italian Alps: a new endemic area? Int J Parasitol 7(3):309–316. https://doi.org/10.1016/j.ijppaw.2018.08.001

    Article  Google Scholar 

  • Oksanen A, Siles-Lucas M, Karamon J, Possenti A, Conraths FJ, Romig T, Wysocki P, Mannocci A, Mipatrini D, La Torre G, Boufana B, Casulli A (2016) The geographical distribution and prevalence of Echinococcus multilocularis in animals in the European Union and adjacent countries: a systematic review and meta-analysis. Parasit Vectors 9(1):1–23. https://doi.org/10.1186/s13071-016-1746-4

    Article  Google Scholar 

  • Petavy AF, Deblock S (1983) Connaissance du foyer auvergnat d'échinococcose alvéolaire. Ann Parasitol Hum Comp 58(5):439–453

    Article  CAS  PubMed  Google Scholar 

  • R Development Core Team (2005) R: A language and environment for statistical computing. The R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Romig T (2009) Echinococcus multilocularis in Europe—state of the art. Vet Res Commun 33(Suppl 1):31–34. https://doi.org/10.1007/s11259-009-9244-1

    Article  PubMed  Google Scholar 

  • Romig T, Dinkel A, Mackenstedt U (2006) The present situation of echinococcosis in Europe. Parasitol Int 55(Suppl):S187–S191. https://doi.org/10.1016/j.parint.2005.11.028

    Article  PubMed  Google Scholar 

  • Shimodaira H (2002) An approximately unbiased test of phylogenetic tree selection. Syst Biol 51(3):492–508. https://doi.org/10.1080/10635150290069913

    Article  PubMed  Google Scholar 

  • Shimodaira H (2004) Approximately unbiased tests of regions using multistep-multiscale bootstrap resampling. Ann Stat 32(6):2616–2641

    Article  Google Scholar 

  • Suzuki R, Shimodaira H (2006) Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics 22(12):1540–1542. https://doi.org/10.1093/bioinformatics/btl117

    Article  CAS  PubMed  Google Scholar 

  • Umhang G, Comte S, Hormaz V, Boucher JM, Raton V, Favier S, Raoul F, Giraudoux P, Combes B, Boue F (2016) Retrospective analyses of fox feces by real-time PCR to identify new endemic areas of Echinococcus multilocularis in France. Parasitol Res 115(11):4437–4441. https://doi.org/10.1007/s00436-016-5220-1

    Article  PubMed  Google Scholar 

  • Umhang G, Karamon J, Hormaz V, Knapp J, Cencek T, Boué F (2017) A step forward in the understanding of the presence and expansion of Echinococcus multilocularis in Eastern Europe using microsatellite EmsB genoty** in Poland. Infect Genet Evol 54:176–182. https://doi.org/10.1016/j.meegid.2017.07.004

    Article  PubMed  Google Scholar 

  • Umhang G, Knapp J, Hormaz V, Raoul F, Boue F (2014) Using the genetics of Echinococcus multilocularis to trace the history of expansion from an endemic area. Infect Genet Evol 22:142–149. https://doi.org/10.1016/j.meegid.2014.01.018

    Article  CAS  PubMed  Google Scholar 

  • Umhang G, Richomme C, Boucher JM, Guedon G, Boue F (2013) Nutrias and muskrats as bioindicators for the presence of Echinococcus multilocularis in new endemic areas. Vet Parasitol 197(1-2):283–287. https://doi.org/10.1016/j.vetpar.2013.05.003

    Article  PubMed  Google Scholar 

  • Vuitton DA, Demonmerot F, Knapp J, Richou C, Grenouillet F, Chauchet A, Vuitton L, Bresson-Hadni S, Millon L (2015) Clinical epidemiology of human AE in Europe. Vet Parasitol 213(3–4):110–120. https://doi.org/10.1016/j.vetpar.2015.07.036

    Article  CAS  PubMed  Google Scholar 

  • Vuitton DA, McManus DP, Rogan MT, Romig T, Gottstein B, Naidich A, Tuxun T, Wen H, Menezes da Silva A, Echinococcosis TWAO, Vuitton DA, McManus DP, Romig T, Rogan MR, Gottstein B, Menezes da Silva A, Wen H, Naidich A, Tuxun T, Avcioglu A, Boufana B, Budke C, Casulli A, Güven E, Hillenbrand A, Jalousian F, Jemli MH, Knapp J, Laatamna A, Lahmar S, Naidich A, Rogan MT, Sadjjadi SM, Schmidberger J, Amri M, Bellanger A-P, Benazzouz S, Brehm K, Hillenbrand A, Jalousian F, Kachani M, Labsi M, Masala G, Menezes da Silva A, Sadjjadi Seyed M, Soufli I, Touil-Boukoffa C, Wang J, Zeyhle E, Aji T, Akhan O, Bresson-Hadni S, Dziri C, Gräter T, Grüner B, Haïf A, Hillenbrand A, Koch S, Rogan MT, Tamarozzi F, Tuxun T, Giraudoux P, Torgerson P, Vizcaychipi K, **ao N, Altintas N, Lin R, Millon L, Zhang W, Achour K, Fan H, Junghanss T, Mantion GA (2020) International consensus on terminology to be used in the field of echinococcoses. Parasite 27:41. https://doi.org/10.1051/parasite/2020024

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Etienne Ramadier, Gaëlle Sobzyck-Moran and Cedric Jaquet from VetAgro Sup and the ‘Communauté de communes du Briançonnais’ involved in A. terrestris trap**, Michel Munier and Nicolas Penel from ANSES for hel** with rodent necropsy.

Funding

Trap** from Auvergne was supported by the European Union through ERDF funds and the Auvergne Regional Council (‘Contribution à la lutte contre les campagnols terrestres’ programme).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gérald Umhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Section Editor: Hiroshi Sato

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Umhang, G., Demerson, JM., Legras, L. et al. Rodent control programmes can integrate Echinococcus multilocularis surveillance by facilitating parasite genoty**: the case of Arvicola terrestris voles screening in France. Parasitol Res 120, 1903–1908 (2021). https://doi.org/10.1007/s00436-021-07126-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-021-07126-7

Keywords

Navigation