Log in

Implementation of the Microdialysis Method in the Hamster Dorsal Skinfold Chamber

  • Published:
Research in Experimental Medicine

Abstract

The aim of this study was to implement the microdialysis method, a well-established technique for measuring the local concentration of neurotransmitters and metabolites in the brain, in the dorsal skinfold chamber of the awake hamster. First, the effects of implanted, nonperfused microdialysis probes on the microcirculation were examined. Skinfold chambers were prepared with and without probes. Two and 3 days later, the following parameters were assessed: diameter, red blood cell (RBC) velocity, macromolecular leakage, leukocyte rolling fraction, and adherent leukocytes in venules, diameter and macromolecular leakage in arterioles, and functional capillary density (FCD). No significant differences between the animals of the two groups were observed in any of the parameters on either day. Second, the interstitial lactate concentration was measured at two perfusion rates in groups with and without a 4-h tourniquet ischemia. The induction of ischemia resulted in a significant increase in lactate concentration over the control values in the tissue within 1 h to 8000±860 μM, where it remained until the reperfusion, at which point the concentration returned to control values within 1 h. The microdialysis method provides the opportunity to measure the concentration of metabolites in the extravascular space of the hamster dorsal skinfold chamber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balcioglu A, Maher TJ (1993) Determination of kainic acid-induced release of nitric oxide using a novel hemoglobin trap** technique with microdialysis. J Neurochem 61:2311–2313

    Article  CAS  PubMed  Google Scholar 

  2. Benveniste H (1989) Brain microdialysis. JNeurochem 52:1667–1679

    Article  CAS  Google Scholar 

  3. Benveniste H, Diemer NH (1987) Cellular reactions to implantation of a microdialysis tube in the rat hippocampus. Acta Neuropathol Berl 74:234–238

    Article  CAS  PubMed  Google Scholar 

  4. Carden DL, Smith JK, Korthuis RJ (1990) Neutrophil-mediated microvascular dysfunction in postischemic canine skeletal muscle. Role of granulocyte adherence. Circ Res 66:1436–1444

    CAS  Google Scholar 

  5. de Boer J, Postema F, Plijter Groendijk H, Korf J (1991) Continuous monitoring of extracellular lactate concentration by microdialysis lactography for the study of rat muscle metabolism in vivo. Pflügers Arch Physiol 419:1–6

    Article  Google Scholar 

  6. Dorheim TA, Wang T, Mentzer RM Jr, Van Wylen DG (1990) Interstitial purine metabolites during regional myocardial ischemia. J Surg Res 48:491–497

    Article  CAS  PubMed  Google Scholar 

  7. Endrich B, Asaishi K, Götz A, Messmer K (1980) Technical report — a new chamber technique for microvascular studies in unanesthetized hamsters. Res Exp Med Berl 177:125–134

    Article  CAS  PubMed  Google Scholar 

  8. Gerin C, Privat A (1996) Evaluation of the function of microdialysis probes permanently implanted into the rat CNS and coupled to an on-line HPLC system of analysis. J Neurosci Methods 66:81–92

    Article  CAS  PubMed  Google Scholar 

  9. Harris AG, Hecht R, Peer F, Nolte D, Messmer K (1997) An improved intravital microscopy system. Int J Microcirc Clin Exp 17:322–327

    Article  CAS  PubMed  Google Scholar 

  10. Harris AG, Leiderer R, Peer F, Messmer K (1996) Skeletal muscle microvascular and tissue injury after varying durations of ischemia. Am J Physiol 271:H2388–H2398

    CAS  PubMed  Google Scholar 

  11. Harris K, Walker PM, Mickle DA, Harding R, Gatley R, Wilson GJ, Kuzon B, McKee N, Romaschin AD (1986) Metabolic response of skeletal muscle to ischemia. Am J Physiol 250:H213–220

    CAS  PubMed  Google Scholar 

  12. Jaeschke H, Smith CW (1997) Mechanisms of neutrophil-induced parenchymal cell injury. J Leukoc Biol 61:647–653

    CAS  PubMed  Google Scholar 

  13. Jerome SN, Akimitsu T, Korthuis RJ (1994) Leukocyte adhesion, edema, and development of postischemic capillary no-reflow. Am J Physiol 267:H1329–336

    CAS  PubMed  Google Scholar 

  14. Kehr J (1993) A survey on quantitative microdialysis: theoretical models and practical implications. J Neurosci Methods 48:251–261

    Article  CAS  PubMed  Google Scholar 

  15. Klyscz T, Jünger M, Jung F, Zeintl H (1997) Cap Image: a newly developed computer aided videoframe analysis system for dynamic capillaroscopy. Biomed Tech (Berlin) 42:168–175

    Article  CAS  Google Scholar 

  16. Korthuis RJ, Grisham MB, Granger DN (1988) Leukocyte depletion attenuates vascular injury in postischemic skeletal muscle. Am J Physiol 254:H823–827

    CAS  PubMed  Google Scholar 

  17. Maughan RJ (1982) A simple, rapid method for the determination of glucose, lactate, pyruvate, alanine, 3-hydroxybutyrate and acetoacetate on a single 20-μl blood sample. Clin Chim Acta 122:231–240

    Article  CAS  PubMed  Google Scholar 

  18. Messmer K, Funk W, Endrich B, Zeintl H (1984) The perspective of new methods in microcirculation research. Prog Appl Microcirc 6:77–90

    Google Scholar 

  19. Müller M, Schmid R, Nieszpaur Los M, Fassolt A, Lonnroth P, Fasching P, Eichler HG (1995) Key metabolite kinetics in human skeletal muscle during ischaemia and reperfusion: measurement by microdialysis. Eur J Clin Invest 25:601–607 ai_20._Nolte D, Bayer M, Lehr HA, Becker M, Krombach F, Kreimeier U, Messmer K (1992) Attenuation of postischemic microvascular disturbances in striated muscle by hyperosmolar saline dextran. Am J Physiol 263:H1411–1416

    Article  PubMed  Google Scholar 

  20. Nolte D, Hecht R, Schmid P, Botzlar A, Menger MD, Neumueller C, Sinowatz F, Vestweber D, Messmer K (1994) Role of Mac-1 and ICAM-1 in ischemia-reperfusion injury in a microcirculation model of BALB/C mice. Am J Physiol 267:H1320–1328

    CAS  PubMed  Google Scholar 

  21. Nolte D, Menger MD, Messmer K (1995) Microcirculatory models of ischaemia-reperfusion in skin and striated muscle. Int J Microcirc Clin Exp 15[Suppl 1]:9–16

    Article  PubMed  Google Scholar 

  22. Okuda C, Sawa T, Harada M, Murakami T, Tanaka Y (1992) Continuous measurement of lactate concentration in skeletal muscle and liver interstitium using a microdialysis method after acute hemorrhage in anesthetized rats. Circ Shock 37:230–235

    CAS  PubMed  Google Scholar 

  23. Pettigrew LC, Meyer JJ, Craddock SD, Butler SM, Tai HH, Yokel RA (1995) Delayed elevation of platelet activating factor in ischemic hippocampus. Brain Res 691:243–247

    Article  CAS  PubMed  Google Scholar 

  24. Sirsjö A, Arstrand K, Kagedal B, Nylander G, Gidlöf A (1996) In situ microdialysis for monitoring of extracellular glutathione levels in normal, ischemic and post-ischemic skeletal muscle. Free Radic Res 25:385–391

    Article  PubMed  Google Scholar 

  25. Ste Marie L, Boismenu D, Vachon L, Montgomery J (1996) Evaluation of sodium 4-hydroxybenzoate as an hydroxyl radical trap using gas chromatography-mass spectrometry and high-performance liquid chromatography with electrochemical detection. Anal Biochem 241:67–74

    Article  CAS  PubMed  Google Scholar 

  26. Zeintl H, Sack FU, Intaglietta M, Messmer K (1989) Computer assisted leukocyte adhesion measurement in intravital microscopy. Int J Microcirc Clin Exp 8:293–302

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harris, A.G., Schropp, A., Schütze, E. et al. Implementation of the Microdialysis Method in the Hamster Dorsal Skinfold Chamber. Res. Exp. Med. 199, 141–152 (1999). https://doi.org/10.1007/s004330050119

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s004330050119

Key words

Navigation