Log in

Low expression of isocitrate dehydrogenase 1 (IDH1) R132H is associated with advanced pathological features in laryngeal squamous cell carcinoma

  • Research
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Introduction

Recent developments in genomic sequencing have led to the identification of somatic mutations in isocitrate dehydrogenase 1 (IDH1) in various malignancies. IDH1 R132H is the most common mutation of IDH1, which affects codon 132 and results in the conversion of amino acid residue arginine (R) to histidine (H). This study is designed to evaluate the association between the expression of IDH1 R132H and clinicopathological characteristics in laryngeal squamous cell carcinoma (LSCC).

Methods

The expression pattern and clinical significance of IDH1 R132H were investigated in tissue microarrays (TMAs) of 50 LSCC tumors as well as adjacent normal tissues using immunohistochemistry. Then the exons of the 12 tumor samples with negative/weak positive staining were sequenced by applying polymerase chain reaction (PCR).

Results

The results demonstrated that the cytoplasmic expression of IDH1 R132H was downregulated in tumor cells compared to adjacent normal tissues. A statistically significant association was found between a low level of cytoplasmic expression of IDH1 R132H protein and an increase in histological grade (p < 0.001), perineural invasion (p = 0.019), and lymph node involvement (p < 0.001). The exon4 sequencing results showed that only one sample was positive for IDH1 R132H mutation. IDH1 R132H expression was observed in 39 (78.0%) LSCC samples.

Conclusion

These findings indicate that low cytoplasmic expression of IDH1 R132H may have clinical significance in LSCC patients and is associated with more aggressive tumor behavior and progression of the disease, which can help improve potential treatment in patients with LSCC. Further investigations are needed to understand the biological function of IDH1 R132H and larger sample size to confirm our findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

The analyzed data during the current study are available from the corresponding author on reasonable request.

References

  • Al-Khallaf H (2017) Isocitrate dehydrogenases in physiology and cancer: biochemical and molecular insight. Cell Biosci 7:37

    PubMed  PubMed Central  Google Scholar 

  • Amary MF, Bacsi K, Maggiani F, Damato S, Halai D, Berisha F et al (2011) IDH1 and IDH2 mutations are frequent events in central chondrosarcoma and central and periosteal chondromas but not in other mesenchymal tumours. J Pathol 224(3):334–343

    CAS  PubMed  Google Scholar 

  • Balss J, Meyer J, Mueller W, Korshunov A, Hartmann C, von Deimling A (2008) Analysis of the IDH1 codon 132 mutation in brain tumors. Acta Neuropathol 116(6):597–602

    CAS  PubMed  Google Scholar 

  • Bleeker FE, Lamba S, Leenstra S, Troost D, Hulsebos T, Vandertop WP et al (2009) IDH1 mutations at residue p.R132 (IDH1(R132)) occur frequently in high-grade gliomas but not in other solid tumors. Hum Mutat 30(1):7–11

    CAS  PubMed  Google Scholar 

  • Borger DR, Tanabe KK, Fan KC, Lopez HU, Fantin VR, Straley KS et al (2012) Frequent mutation of isocitrate dehydrogenase (IDH) 1 and IDH2 in cholangiocarcinoma identified through broad-based tumor genoty**. Oncologist 17(1):72–79

    CAS  PubMed  Google Scholar 

  • Cairns RA, Mak TW (2013) Oncogenic isocitrate dehydrogenase mutations: mechanisms, models, and clinical opportunities. Cancer Discov 3(7):730–741

    CAS  PubMed  Google Scholar 

  • Calvert AE, Chalastanis A, Wu Y, Hurley LA, Kouri FM, Bi Y et al (2017) Cancer-associated IDH1 promotes growth and resistance to targeted therapies in the absence of mutation. Cell Rep 19(9):1858–1873

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carlisle JW, Steuer CE, Owonikoko TK, Saba NF (2020) An update on the immune landscape in lung and head and neck cancers. CA Cancer J Clin 70(6):505–517

    PubMed  Google Scholar 

  • Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA et al (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2(5):401–404

    PubMed  Google Scholar 

  • Chen X, Li Q, Wang C, Xu W, Han L, Liu Y et al (2016) Prognostic and diagnostic potential of isocitrate dehydrogenase 1 in esophageal squamous cell carcinoma. Oncotarget 7(52):86148–86160

    PubMed  PubMed Central  Google Scholar 

  • Chotirat S, Thongnoppakhun W, Promsuwicha O, Boonthimat C, Auewarakul CU (2012) Molecular alterations of isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) metabolic genes and additional genetic mutations in newly diagnosed acute myeloid leukemia patients. J Hematol Oncol 5:5

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper JS, Pajak TF, Forastiere AA, Jacobs J, Campbell BH, Saxman SB et al (2004) Postoperative concurrent radiotherapy and chemotherapy for high-risk squamous-cell carcinoma of the head and neck. N Engl J Med 350(19):1937–1944

    PubMed  Google Scholar 

  • Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM et al (2009) Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462(7274):739–744

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dang L, Yen K, Attar EC (2016) IDH mutations in cancer and progress toward development of targeted therapeutics. Ann Oncol 27(4):599–608

    CAS  PubMed  Google Scholar 

  • DiNardo CD, Propert KJ, Loren AW, Paietta E, Sun Z, Levine RL et al (2013) Serum 2-hydroxyglutarate levels predict isocitrate dehydrogenase mutations and clinical outcome in acute myeloid leukemia. Blood 121(24):4917–4924

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doncheva NT, Morris JH, Gorodkin J, Jensen LJ (2019) Cytoscape StringApp: network analysis and visualization of proteomics data. J Proteome Res 18(2):623–632

    CAS  PubMed  Google Scholar 

  • Figueroa ME, Abdel-Wahab O, Lu C, Ward PS, Patel J, Shih A et al (2010) Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18(6):553–567

    CAS  PubMed  PubMed Central  Google Scholar 

  • Forastiere AA, Ismaila N, Lewin JS, Nathan CA, Adelstein DJ, Eisbruch A et al (2018) Use of larynx-preservation strategies in the treatment of laryngeal cancer: American Society of Clinical Oncology clinical practice guideline update. J Clin Oncol 36(11):1143–1169

    PubMed  Google Scholar 

  • Ghiam A, Cairns R, Thoms J, Dal Pra A, Ahmed O, Meng A et al (2012) IDH mutation status in prostate cancer. Oncogene 31(33):3826

    CAS  PubMed  Google Scholar 

  • Goldman M, Craft B, Hastie M, Repečka K, Kamath A, McDade F, et al. The UCSC Xena platform for public and private cancer genomics data visualization and interpretation. bioRxiv 2019:326470

  • Gondim DD, Gener MA, Curless KL, Cohen-Gadol AA, Hattab EM, Cheng L (2019) Determining IDH-mutational status in gliomas using IDH1-R132H antibody and polymerase chain reaction. Appl Immunohistochem Mol Morphol 27(10):722–725

    CAS  PubMed  Google Scholar 

  • Guo JU, Su Y, Zhong C, Ming GL, Song H (2011) Emerging roles of TET proteins and 5-hydroxymethylcytosines in active DNA demethylation and beyond. Cell Cycle 10(16):2662–2668

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang B, Zhao W, Shi M, Zhang J, Chen A, Ma H et al (2018) IDH1 Arg-132 mutant promotes tumor formation through down-regulating p53. J Biol Chem 293(25):9747–9758

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson DE, Burtness B, Leemans CR, Lui VWY, Bauman JE, Grandis JR (2020) Head and neck squamous cell carcinoma. Nat Rev Dis Primers 6(1):92

    PubMed  PubMed Central  Google Scholar 

  • Kahlert C, Weber H, Mogler C, Bergmann F, Schirmacher P, Kenngott HG et al (2009) Increased expression of ALCAM/CD166 in pancreatic cancer is an independent prognostic marker for poor survival and early tumour relapse. Br J Cancer 101(3):457–464

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kang MR, Kim MS, Oh JE, Kim YR, Song SY, Seo SI et al (2009) Mutational analysis of IDH1 codon 132 in glioblastomas and other common cancers. Int J Cancer 125(2):353–355

    CAS  PubMed  Google Scholar 

  • Kloosterhof NK, Bralten LB, Dubbink HJ, French PJ, van den Bent MJ (2011) Isocitrate dehydrogenase-1 mutations: a fundamentally new understanding of diffuse glioma? Lancet Oncol 12(1):83–91

    CAS  PubMed  Google Scholar 

  • Krell D, Mulholland P, Frampton AE, Krell J, Stebbing J, Bardella C (2013) IDH mutations in tumorigenesis and their potential role as novel therapeutic targets. Future Oncol 9(12):1923–1935

    CAS  PubMed  Google Scholar 

  • Laba P, Wang J, Zhang J (2018) Low level of isocitrate dehydrogenase 1 predicts unfavorable postoperative outcomes in patients with clear cell renal cell carcinoma. BMC Cancer 18(1):852

    PubMed  PubMed Central  Google Scholar 

  • Lane AN, Higashi RM, Fan TW (2020) Metabolic reprogramming in tumors: contributions of the tumor microenvironment. Genes Dis 7(2):185–198

    CAS  PubMed  Google Scholar 

  • Lee SM, Koh HJ, Park DC, Song BJ, Huh TL, Park JW (2002) Cytosolic NADP(+)-dependent isocitrate dehydrogenase status modulates oxidative damage to cells. Free Radic Biol Med 32(11):1185–1196

    CAS  PubMed  Google Scholar 

  • Li J, Huang J, Huang F, ** Q, Zhu H, Wang X et al (2016) Decreased expression of IDH1-R132H correlates with poor survival in gastrointestinal cancer. Oncotarget 7(45):73638–73650

    PubMed  PubMed Central  Google Scholar 

  • Liu WS, Chan SH, Chang HT, Li GC, Tu YT, Tseng HH et al (2018) Isocitrate dehydrogenase 1-snail axis dysfunction significantly correlates with breast cancer prognosis and regulates cell invasion ability. Breast Cancer Res 20(1):25

    PubMed  PubMed Central  Google Scholar 

  • Liu Y, Fang B, Feng X, Jiang Y, Zeng Y, Jiang J (2022) Mechanism of IDH1-R132H mutation in T cell acute lymphoblastic leukemia mouse model via the Notch1 pathway. Tissue Cell 74:101674

    PubMed  Google Scholar 

  • Lu C, Ward PS, Kapoor GS, Rohle D, Turcan S, Abdel-Wahab O et al (2012) IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 483(7390):474–478

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma D, Zhan D, Fu Y, Wei S, Lal B, Wang J et al (2021) Mutant IDH1 promotes phagocytic function of microglia/macrophages in gliomas by downregulating ICAM1. Cancer Lett 517:35–45

    CAS  PubMed  PubMed Central  Google Scholar 

  • Malueka RG, Theresia E, Fitria F, Argo IW, Donurizki AD, Shaleh S et al (2020) Comparison of polymerase chain reaction-restriction fragment length polymorphism, immunohistochemistry, and DNA sequencing for the detection of IDH1 mutations in gliomas. Asian Pac J Cancer Prev 21(11):3229–3234

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marcucci G, Maharry K, Wu YZ, Radmacher MD, Mrózek K, Margeson D et al (2010) IDH1 and IDH2 gene mutations identify novel molecular subsets within de novo cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. J Clin Oncol 28(14):2348–2355

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mardis ER, Ding L, Dooling DJ, Larson DE, McLellan MD, Chen K et al (2009) Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med 361(11):1058–1066

    CAS  PubMed  PubMed Central  Google Scholar 

  • Megwalu UC, Sikora AG (2014) Survival outcomes in advanced laryngeal cancer. JAMA Otolaryngol Head Neck Surg 140(9):855–860

    PubMed  Google Scholar 

  • Metallo CM, Gameiro PA, Bell EL, Mattaini KR, Yang J, Hiller K et al (2011) Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481(7381):380–384

    PubMed  PubMed Central  Google Scholar 

  • Metellus P, Colin C, Taieb D, Guedj E, Nanni-Metellus I, de Paula AM et al (2011) IDH mutation status impact on in vivo hypoxia biomarkers expression: new insights from a clinical, nuclear imaging and immunohistochemical study in 33 glioma patients. J Neurooncol 105(3):591–600

    CAS  PubMed  Google Scholar 

  • Molenaar RJ, Radivoyevitch T, Maciejewski JP, van Noorden CJ, Bleeker FE (2014) The driver and passenger effects of isocitrate dehydrogenase 1 and 2 mutations in oncogenesis and survival prolongation. Biochim Biophys Acta 1846(2):326–341

    CAS  PubMed  Google Scholar 

  • Olar A, Raghunathan A, Albarracin CT, Aldape KD, Cahill DP 3rd, Powell SZ et al (2012) Absence of IDH1-R132H mutation predicts rapid progression of nonenhancing diffuse glioma in older adults. Ann Diagn Pathol 16(3):161–170

    PubMed  Google Scholar 

  • Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P et al (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321(5897):1807–1812

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paschka P, Schlenk RF, Gaidzik VI, Habdank M, Krönke J, Bullinger L et al (2010) IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication. J Clin Oncol 28(22):3636–3643

    CAS  PubMed  Google Scholar 

  • Pietrak B, Zhao H, Qi H, Quinn C, Gao E, Boyer JG et al (2011) A tale of two subunits: how the neomorphic R132H IDH1 mutation enhances production of αHG. Biochemistry 50(21):4804–4812

    CAS  PubMed  Google Scholar 

  • Piñero J, Ramírez-Anguita JM, Saüch-Pitarch J, Ronzano F, Centeno E, Sanz F et al (2020) The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res 48(D1):D845–D855

    PubMed  Google Scholar 

  • Reitman ZJ, Yan H (2010) Isocitrate dehydrogenase 1 and 2 mutations in cancer: alterations at a crossroads of cellular metabolism. J Natl Cancer Inst 102(13):932–941

    CAS  PubMed  PubMed Central  Google Scholar 

  • Remacha L, Comino-Méndez I, Richter S, Contreras L, Currás-Freixes M, Pita G et al (2017) Targeted exome sequencing of krebs cycle genes reveals candidate cancer-predisposing mutations in pheochromocytomas and paragangliomas. Clin Cancer Res 23(20):6315–6324

    CAS  PubMed  Google Scholar 

  • Robertson FL, Marqués-Torrejón MA, Morrison GM, Pollard SM (2019) Experimental models and tools to tackle glioblastoma. Dis Model Mech. https://doi.org/10.1242/dmm.040386

    Article  PubMed  PubMed Central  Google Scholar 

  • Ronnebaum SM, Ilkayeva O, Burgess SC, Joseph JW, Lu D, Stevens RD et al (2006) A pyruvate cycling pathway involving cytosolic NADP-dependent isocitrate dehydrogenase regulates glucose-stimulated insulin secretion. J Biol Chem 281(41):30593–30602

    CAS  PubMed  Google Scholar 

  • Sasaki M, Knobbe CB, Itsumi M, Elia AJ, Harris IS, Chio II et al (2012) D-2-hydroxyglutarate produced by mutant IDH1 perturbs collagen maturation and basement membrane function. Genes Dev 26(18):2038–2049

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shait Mohammed MR, Alzahrani F, Hosawi S, Choudhry H, Khan MI (2022) Profiling the effect of targeting wild isocitrate dehydrogenase 1 (IDH1) on the cellular metabolome of leukemic cells. Int J Mol Sci 23(12):6653. https://doi.org/10.3390/ijms23126653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shen X, Wu S, Zhang J, Li M, Xu F, Wang A et al (2020) Wild-type IDH1 affects cell migration by modulating the PI3K/AKT/mTOR pathway in primary glioblastoma cells. Mol Med Rep 22(3):1949–1957

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shibata T, Kokubu A, Miyamoto M, Sasajima Y, Yamazaki N (2011) Mutant IDH1 confers an in vivo growth in a melanoma cell line with BRAF mutation. Am J Pathol 178(3):1395–1402

    CAS  PubMed  PubMed Central  Google Scholar 

  • Siegel RL, Miller KD, Fuchs HE, Jemal A (2022) Cancer statistics, 2022. CA Cancer J Clin 72(1):7–33

    PubMed  Google Scholar 

  • Sjöblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD et al (2006) The consensus coding sequences of human breast and colorectal cancers. Science 314(5797):268–274

    PubMed  Google Scholar 

  • Smolková K, Ježek P (2012) The role of mitochondrial NADPH-dependent isocitrate dehydrogenase in cancer cells. Int J Cell Biol 2012:273947

    PubMed  PubMed Central  Google Scholar 

  • Sporikova Z, Slavkovsky R, Tuckova L, Kalita O, Megova Houdova M, Ehrmann J et al (2022) IDH1/2 mutations in patients with diffuse gliomas: a single centre retrospective massively parallel sequencing analysis. Appl Immunohistochem Mol Morphol 30(3):178–183

    PubMed  Google Scholar 

  • Stoddard BL, Dean A, Koshland DE Jr (1993) Structure of isocitrate dehydrogenase with isocitrate, nicotinamide adenine dinucleotide phosphate, and calcium at 2.5-A resolution: a pseudo-Michaelis ternary complex. Biochemistry 32(36):9310–9316

    CAS  PubMed  Google Scholar 

  • Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3):209–249

    PubMed  Google Scholar 

  • Tallegas M, Miquelestorena-Standley É, Labit-Bouvier C, Badoual C, Francois A, Gomez-Brouchet A et al (2019) IDH mutation status in a series of 88 head and neck chondrosarcomas: different profile between tumors of the skull base and tumors involving the facial skeleton and the laryngotracheal tract. Hum Pathol 84:183–191

    CAS  PubMed  Google Scholar 

  • Tommasini-Ghelfi S, Murnan K, Kouri FM, Mahajan AS, May JL, Stegh AH (2019) Cancer-associated mutation and beyond: the emerging biology of isocitrate dehydrogenases in human disease. Sci Adv 5(5):eaaw4543

  • Ward PS, Cross JR, Lu C, Weigert O, Abel-Wahab O, Levine RL et al (2012) Identification of additional IDH mutations associated with oncometabolite R(-)-2-hydroxyglutarate production. Oncogene 31(19):2491–2498

    CAS  PubMed  Google Scholar 

  • Xu X, Zhao J, Xu Z, Peng B, Huang Q, Arnold E et al (2004) Structures of human cytosolic NADP-dependent isocitrate dehydrogenase reveal a novel self-regulatory mechanism of activity. J Biol Chem 279(32):33946–33957

    CAS  PubMed  Google Scholar 

  • Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim SH et al (2011) Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell 19(1):17–30

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu H, Sun Y, You B, Huang CP, Ye D, Chang C (2020) Androgen receptor reverses the oncometabolite R-2-hydroxyglutarate-induced prostate cancer cell invasion via suppressing the circRNA-51217/miRNA-646/TGFβ1/p-Smad2/3 signaling. Cancer Lett 472:151–164

    CAS  PubMed  Google Scholar 

  • Yan H, Parsons DW, ** G, McLendon R, Rasheed BA, Yuan W et al (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360(8):765–773

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yan M, Yang X, Wang L, Clark D, Zuo H, Ye D et al (2013) Plasma membrane proteomics of tumor spheres identify CD166 as a novel marker for cancer stem-like cells in head and neck squamous cell carcinoma. Mol Cell Proteomics 12(11):3271–3284

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yan B, Hu Y, Ma T, Wang Y (2018) IDH1 mutation promotes lung cancer cell proliferation through methylation of Fibulin-5. Open Biol. https://doi.org/10.1098/rsob.180086

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang H, Ye D, Guan KL, **ong Y (2012) IDH1 and IDH2 mutations in tumorigenesis: mechanistic insights and clinical perspectives. Clin Cancer Res 18(20):5562–5571

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Chen M, Liu M, Xu Y, Wu G (2021) Glycolysis-related genes serve as potential prognostic biomarkers in clear cell renal cell carcinoma. Oxid Med Cell Longev 2021:6699808

    PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Liu Y, Lang F, Yang C (2022) IDH mutation and cancer stem cell. Essays Biochem. https://doi.org/10.1042/EBC20220008

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao S, Lin Y, Xu W, Jiang W, Zha Z, Wang P et al (2009) Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha. Science 324(5924):261–265

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou B, Yang F, Qin L, Kuai J, Yang L, Zhang L et al (2022) Computational study on novel natural compound inhibitor targeting IDH1_R132H. Aging (albany, NY) 14:5478–5492

    CAS  PubMed  Google Scholar 

Download references

Funding

This study was conducted as part of a resident thesis and was financially supported by a grant from the Department of Pathology, Iran University of Medical Sciences (IUMS; Grant No. 19921).

Author information

Authors and Affiliations

Authors

Contributions

N.Sh., N.E., and F.T. designed and supervised the project, rechecked and approved all parts of the manuscript, and performed data analysis. N.E. and F.T. wrote the manuscript. M.M. and A.M. collected the paraffin-embedded tissues, collected the patient data, and performed an IHC experiment. A.Z.M. analyzed and interpreted the SPSS data and helped to prepare the tables. N.Sh. marked the most representative areas in different parts of the tumor for the construction of TMAs blocks and scored TMAs slides after IHC staining, and helped to prepare the figures. E.J. performed PCR and analyzed the results of PCR. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Nikoo Emtiazi or Fatemeh Tajik.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Ethics approval and consent to participate

All procedures performed in this study were in line with the ethical standards of the institution at which this study was conducted. Informed consent was individually obtained from all participants. The Research Ethics Committee of Iran University of Medical Sciences issued IR.IUMS.FMD.REC.1399.276 for this study.

Informed consent

Informed consent was obtained from all individual participants, parents, or legally authorized representatives of participants below the legal age limit at the time of sample collection with routine consent forms.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shayanfar, N., Zare-Mirzaie, A., Mohammadpour, M. et al. Low expression of isocitrate dehydrogenase 1 (IDH1) R132H is associated with advanced pathological features in laryngeal squamous cell carcinoma. J Cancer Res Clin Oncol 149, 4253–4267 (2023). https://doi.org/10.1007/s00432-022-04336-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-022-04336-z

Keywords

Navigation