Log in

Hyperbilirubinemia and retinopathy of prematurity: a retrospective cohort study

  • Research
  • Published:
European Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Retinopathy of prematurity (ROP) is a vasoproliferative retinal disease in preterm infants. Oxidative stress plays a key role in the pathogenesis of ROP. Due to its antioxidant effects, bilirubin has been proposed to be protective against ROP. This study explored the association between hyperbilirubinemia and ROP. We analyzed a 10-year cohort from a neonatal intensive care unit in Milan, Italy, including 1606 infants born under 32 weeks and/or < 1500 g. Data from 1606 infants meeting specific inclusion criteria were reviewed. Eighty infants were excluded due to lack of data, 1526 were deemed eligible for analysis, and 1269 had hyperbilirubinemia requiring phototherapy. There was a higher incidence of ROP among infants with hyperbilirubinemia (13.8%) versus those without (7.8%, p<0.01). Infants with any ROP, non-severe or severe ROP, were exposed to hyperbilirubinemia for a significantly higher number of days compared with those without ROP. Each additional day of exposure increases the risk of develo** any ROP by 5%, non-severe ROP by 4%, and severe ROP by 6%. However, this correlation was not observed in infants with gestational age less than 27 weeks and/or body weight less than 1000 g.

    Conclusion: Our data show that hyperbilirubinemia requiring phototherapy is associated with an increased risk of develo** ROP. However, severe hyperbilirubinemia and ROP share many of their risk factors. Therefore, rather than being a risk factor itself, hyperbilirubinemia may be a surrogate for other risk factors for ROP.

    Clinical Trial Registration: NCT05806684.

What is Known:

• The development of retinopathy of prematurity (ROP) is influenced by several critical risk factors, including low gestational age, low birth weight, supplemental oxygen use, and increased oxidative stress.

• In vitro, unconjugated bilirubin is an effective scavenger of harmful oxygen species and a reducing agent, highlighting its potential protective role against oxidative stress.

What is New:

• Hyperbilirubinemia requiring phototherapy was associated with an increased risk of develo** ROP, but this association was not observed in the most vulnerable population of extremely preterm infants.

• Every additional day of phototherapy for hyperbilirubinemia increases the risk of ROP by 5% for any ROP, 4% for non-severe ROP, and 6% for severe ROP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

https://classic.clinicaltrials.gov/ct2/show/NCT05806684.

References

  1. Cavallaro G, Filippi L, Bagnoli P, La Marca G, Cristofori G, Raffaeli G, Padrini L, Araimo G, Fumagalli M, Groppo M, Dal Monte M, Osnaghi S, Fiorini P, Mosca F (2014) The pathophysiology of retinopathy of prematurity: an update of previous and recent knowledge. Acta Ophthalmol 92:2–20. https://doi.org/10.1111/aos.12049

    Article  CAS  PubMed  Google Scholar 

  2. Hellström A, Smith LE, Dammann O (2013) Retinopathy of prematurity. Lancet 382:1445–1457

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hundscheid TM, Gulden S, Almutairi MF, Bartoš F, Cavallaro G, Villamor E (2023) Sex differences in the risk of retinopathy of prematurity: a systematic review, frequentist and bayesian meta-analysis, and meta-regression. World J Pediatr. https://doi.org/10.1007/s12519-023-00775-x

    Article  PubMed  PubMed Central  Google Scholar 

  4. Villamor-Martinez E, Cavallaro G, Raffaeli G, Mohammed Rahim OMM, Gulden S, Ghazi AMT, Mosca F, Degraeuwe P, Villamor E (2018) Chorioamnionitis as a risk factor for retinopathy of prematurity: an updated systematic review and meta-analysis. PLoS ONE 13:e0205838. https://doi.org/10.1371/journal.pone.0205838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lofqvist C, Andersson E, Sigurdsson J, Engstrom E, Hard AL, Niklasson A, Smith LE, Hellstrom A (2006) Longitudinal postnatal weight and insulin-like growth factor I measurements in the prediction of retinopathy of prematurity. Arch Ophthalmol 124:1711–1718. https://doi.org/10.1001/archopht.124.12.1711

    Article  PubMed  Google Scholar 

  6. Schalij-Delfos NE, Zijlmans BLM, Cats BP (1996) Towards a universal approach for screening of retinopathy of prematurity (ROP). Doc Ophthalmol 92:137–144. https://doi.org/10.1007/BF02583285

    Article  PubMed  Google Scholar 

  7. Thomas K, Shah PS, Canning R, Harrison A, Lee SK, Dow KE (2015) Retinopathy of prematurity: risk factors and variability in Canadian neonatal intensive care units. J Neonatal Perinat Med 8:207–214. https://doi.org/10.3233/NPM-15814128

    Article  CAS  Google Scholar 

  8. Kim SJ, Port AD, Swan R, Campbell JP, Chan RP, Chiang MF (2018) Retinopathy of prematurity: a review of risk factors and their clinical significance. Surv Ophthalmol 63:618–637

    Article  PubMed  PubMed Central  Google Scholar 

  9. Torres-Cuevas I, Parra-Llorca A, Sánchez-Illana A, Nuñez-Ramiro A, Kuligowski J, Cháfer-Pericás C, Cernada M, Escobar J, Vento M (2017) Oxygen and oxidative stress in the perinatal period. Redox Biol 12:674–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lorente-Pozo S, Parra-Llorca A, Lara-Cantón I, Solaz A, García-Jiménez JL, Pallardó FV, Vento M (2020) Oxygen in the neonatal period: oxidative stress, oxygen load and epigenetic changes. Seminars in fetal and neonatal medicine. Elsevier, p 101090

    Google Scholar 

  11. Buonocore G, Perrone S, Bracci R (2001) Free radicals and brain damage in the newborn. Biol Neonate 79:180–186. https://doi.org/10.1159/000047088

    Article  CAS  PubMed  Google Scholar 

  12. Giuffre M, Rizzo M, Scaturro G, Pitruzzella A, Marino Gammazza A, Cappello F, Corsello G, Li Volti G (2015) Oxidative stress markers at birth: analyses of a neonatal population. Acta Histochem 117:486–491. https://doi.org/10.1016/j.acthis.2015.01.007

    Article  CAS  PubMed  Google Scholar 

  13. van Westering-Kroon E, Huizing MJ, Villamor-Martinez E, Villamor E (2021) Male disadvantage in oxidative stress-associated complications of prematurity: a systematic review, meta-analysis and meta-regression. Antioxid (Basel) 10:1490. https://doi.org/10.3390/antiox10091490

    Article  CAS  Google Scholar 

  14. Dani C, Poggi C, Pratesi S (2019) Bilirubin and oxidative stress in term and preterm infants. Free Radic Res 53:2–7

    Article  CAS  PubMed  Google Scholar 

  15. Stocker R, Yamamoto Y, McDonagh AF, Glazer AN, Ames BN (1987) Bilirubin is an antioxidant of possible physiological importance. Science 235:1043–1046. https://doi.org/10.1126/science.3029864

    Article  CAS  PubMed  Google Scholar 

  16. Baranano DE, Rao M, Ferris CD, Snyder SH (2002) Biliverdin reductase: a major physiologic cytoprotectant. Proc Natl Acad Sci USA 99:16093–16098. https://doi.org/10.1073/pnas.252626999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang WW, Smith DL, Zucker SD (2004) Bilirubin inhibits iNOS expression and NO production in response to endotoxin in rats. Hepatology 40:424–433. https://doi.org/10.1002/hep.20334

    Article  CAS  PubMed  Google Scholar 

  18. Lanone S, Bloc S, Foresti R, Almolki A, Taille C, Callebert J, Conti M, Goven D, Aubier M, Dureuil B, El-Benna J, Motterlini R, Boczkowski J (2005) Bilirubin decreases nos2 expression via inhibition of NAD(P)H oxidase: implications for protection against endotoxic shock in rats. FASEB J 19:1890–1892. https://doi.org/10.1096/fj.04-2368fje

    Article  CAS  PubMed  Google Scholar 

  19. Bélanger S, Lavoie J-C, Chessex P (1997) Influence of bilirubin on the antioxidant capacity of plasma in newborn infants. Neonatology 71:233–238

    Article  Google Scholar 

  20. Gopinathan V, Miller NJ, Milner AD, Rice-Evans CA (1994) Bilirubin and ascorbate antioxidant activity in neonatal plasma. FEBS Lett 349:197–200

    Article  CAS  PubMed  Google Scholar 

  21. Sedlak TW, Snyder SH (2004) Bilirubin benefits: cellular protection by a biliverdin reductase antioxidant cycle. Pediatrics 113:1776–1782

    Article  PubMed  Google Scholar 

  22. Heyman E, Ohlsson A, Girschek P (1989) Retinopathy of prematurity and bilirubin. N Engl J Med 320:256. https://doi.org/10.1056/nejm198901263200420

    Article  CAS  PubMed  Google Scholar 

  23. Yeo KL, Perlman M, Hao Y, Mullaney P (1998) Outcomes of extremely premature infants related to their peak serum bilirubin concentrations and exposure to phototherapy. Pediatrics 102:1426–1431. https://doi.org/10.1542/peds.102.6.1426

    Article  CAS  PubMed  Google Scholar 

  24. Kao JS, Dawson JD, Murray JC, Dagle JM, Berends SK, Gillen SB, Bell EF (2011) Possible roles of bilirubin and breast milk in protection against retinopathy of prematurity. Acta Paediatr 100:347–351. https://doi.org/10.1111/j.1651-2227.2010.02069.x

    Article  PubMed  Google Scholar 

  25. Fereshtehnejad SM, Poorsattar Bejeh Mir K, Poorsattar Bejeh Mir A, Mohagheghi P (2012) Evaluation of the possible antioxidative role of bilirubin protecting from free radical related illnesses in neonates. Acta Med Iran 50:153–163

    CAS  PubMed  Google Scholar 

  26. Romeo M, Tina L, Scuderi A, Di Pietro A, Caracciolo M, Distefano G (1994) Variations of blood bilirubin levels in the newborn with and without retinopathy of prematurity (ROP). Pediatr Med Chir Med Surg Pediatr 16:59–62

    CAS  Google Scholar 

  27. Milner JD, Aly HZ, Ward LB, El-Mohandes A (2003) Does elevated peak bilirubin protect from retinopathy of prematurity in very low birthweight infants. J Perinatol 23:208–211. https://doi.org/10.1038/sj.jp.7210887

    Article  PubMed  Google Scholar 

  28. Weintraub Z, Carmi N, Elouti H, Rumelt S (2011) The association between stage 3 or higher retinopathy of prematurity and other disorders of prematurity. Can J Ophthalmol J Canadien D Ophtalmologie 46:419–424. https://doi.org/10.1016/j.jcjo.2011.07.014

    Article  Google Scholar 

  29. Gaton DD, Gold J, Axer-Siegel R, Wielunsky E, Naor N, Nissenkorn I (1991) Evaluation of bilirubin as possible protective factor in the prevention of retinopathy of prematurity. Br J Ophthalmol 75:532–534. https://doi.org/10.1136/bjo.75.9.532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fauchère JC, Meier-Gibbons FE, Koerner F, Bossi E (1994) Retinopathy of prematurity and bilirubin–no clinical evidence for a beneficial role of bilirubin as a physiological anti-oxidant. Eur J Pediatr 153:358–362. https://doi.org/10.1007/bf01956419

    Article  PubMed  Google Scholar 

  31. DeJonge MH, Khuntia A, Maisels MJ, Bandagi A (1999) Bilirubin levels and severe retinopathy of prematurity in infants with estimated gestational ages of 23 to 26 weeks. J Pediatr 135:102–104. https://doi.org/10.1016/s0022-3476(99)70336-7

    Article  CAS  PubMed  Google Scholar 

  32. Gleissner M, Spantzel T, Bücker-Nott H, Jorch G (2003) Risk factors of retinopathy of prematurity in infants 32 to 36 weeks gestational age. Z Geburtshilfe Neonatol 207:24–28

    CAS  PubMed  Google Scholar 

  33. Abdel Hadi AM, Shereenhamdy (2013) Correlation between risk factors during the neonatal period and appearance of retinopathy of prematurity in preterm infants in neonatal intensive care units in Alexandria, Egypt. Clin Ophthalmology. https://doi.org/10.2147/opth.s40136

    Article  Google Scholar 

  34. Kachikis A, Eckert LO, Walker C, Bardají A, Varricchio F, Lipkind HS, Diouf K, Huang WT, Mataya R, Bittaye M, Cutland C, Boghossian NS, Mallett Moore T, McCall R, King J, Mundle S, Munoz FM, Rouse C, Gravett M, Katikaneni L, Ault K, Klein NP, Roberts DJ, Kochhar S, Chescheir N (2019) Chorioamnionitis: case definition & guidelines for data collection, analysis, and presentation of immunization safety data. Vaccine 37:7610–7622. https://doi.org/10.1016/j.vaccine.2019.05.030

    Article  PubMed  PubMed Central  Google Scholar 

  35. Karrar SA, Hong PL (2023) Preeclampsia [Updated 2023 Feb 13]. In: StatPearls. StatPearls Publishing, Treasure Island, FL, USA. https://www.ncbi.nlm.nih.gov/books/NBK570611/

  36. Osuchukwu O, Reed D (2022) Small for gestational age [Updated 2022 Nov 14]. In: StatPearls. StatPearls Publishing, Treasure Island, FL, USA. https://www.ncbi.nlm.nih.gov/books/NBK563247/

  37. Yadav S, Lee B, Kamity R (2023) Neonatal respiratory distress syndrome. StatPearls. StatPearls Publishing Copyright © 2023, StatPearls Publishing LLC., Treasure Island (FL)

    Google Scholar 

  38. Papile LA, Burstein J, Burstein R, Koffler H (1978) Incidence and evolution of subependymal and intraventricular hemorrhage: a study of infants with birth weights less than 1,500 gm. J Pediatr 92:529–534. https://doi.org/10.1016/s0022-3476(78)80282-0

    Article  CAS  PubMed  Google Scholar 

  39. Jobe AH, Bancalari E (2001) Bronchopulmonary dysplasia. Am J Respir Crit Care Med 163:1723–1729. https://doi.org/10.1164/ajrccm.163.7.2011060

    Article  CAS  PubMed  Google Scholar 

  40. Bell MJ, Ternberg JL, Feigin RD, Keating JP, Marshall R, Barton L, Brotherton T (1978) Neonatal necrotizing enterocolitis. Therapeutic decisions based upon clinical staging. Ann Surg 187:1–7. https://doi.org/10.1097/00000658-197801000-00001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Neu J (1996) Necrotizing enterocolitis: the search for a unifying pathogenic theory leading to prevention. Pediatr Clin North Am 43:409–432. https://doi.org/10.1016/s0031-3955(05)70413-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. O’Rourke D, El-Khuffash A, Moody C, Walsh K, Molloy E (2008) Patent ductus arteriosus evaluation by serial echocardiography in preterm infants. Acta Paediatr 97:574–578

    Article  PubMed  Google Scholar 

  43. Sehgal A, McNamara PJ (2009) Does echocardiography facilitate determination of hemodynamic significance attributable to the ductus arteriosus? Eur J Pediatr 168:907–914

    Article  PubMed  Google Scholar 

  44. Tissot C, Singh Y (2020) Neonatal functional echocardiography. Curr Opin Pediatr 32:235–244

    Article  PubMed  Google Scholar 

  45. Shepherd JL, Noori S (2019) What is a hemodynamically significant PDA in preterm infants? Congenit Heart Dis 14:21–26

    PubMed  Google Scholar 

  46. Shane AL, Sánchez PJ, Stoll BJ (2017) Neonatal sepsis. Lancet 390:1770–1780

    Article  PubMed  Google Scholar 

  47. Procianoy RS, Silveira RC (2020) The challenges of neonatal sepsis management. J Pediatr (Rio J) 96:80–86

    Article  PubMed  Google Scholar 

  48. Hornik CP, Fort P, Clark RH, Watt K, Benjamin DK Jr, Smith PB, Manzoni P, Jacqz-Aigrain E, Kaguelidou F, Cohen-Wolkowiez M (2012) Early and late onset sepsis in very-low-birth-weight infants from a large group of neonatal intensive care units. Early Hum Dev 88:S69–S74

    Article  PubMed  PubMed Central  Google Scholar 

  49. Cohen-Wolkowiez M, Moran C, Benjamin DK, Cotten CM, Clark RH, Benjamin DK Jr, Smith PB (2009) Early and late onset sepsis in late preterm infants. Pediatr Infect Dis J 28:1052–1056

    Article  PubMed  PubMed Central  Google Scholar 

  50. Thomas N, McNeil A, Collins CL (2022) Blood gas bilirubin measurements in neonates must be adjusted for HbF to avoid misleading results. Arch Dis Child Fetal Neonatal Ed 107:341–342. https://doi.org/10.1136/archdischild-2021-322071

    Article  PubMed  Google Scholar 

  51. Amos RC, Jacob H, Leith W (2017) Jaundice in newborn babies under 28 days: NICE guideline 2016 (CG98). Arch Dis Child Educ Pract 102:207–209

    Article  Google Scholar 

  52. Prematurity ICCR (2005) The International classification of retinopathy of prematurity revisited. Arch Ophthalmol 123:991–999. https://doi.org/10.1001/archopht.123.7.991

    Article  Google Scholar 

  53. R-Core-Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  54. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Int J Surg 88:105906

    Article  PubMed  Google Scholar 

  55. Hammermann C, Goldstein R, Kaplan M, Eran M, Goldschmidt D, Eidelman AI (1998) Bilirubin in the premature: toxic waste or natural defense? Clin Chem 44:2551–2553

    Article  CAS  PubMed  Google Scholar 

  56. Hegyi T, Goldie E, Hiatt M (1994) The protective role of bilirubin in oxygen-radical diseases of the preterm infant. J Perinatol 14:296–300

    CAS  PubMed  Google Scholar 

  57. Stocker R, Glazer AN, Ames BN (1987) Antioxidant activity of albumin-bound bilirubin. Proc Natl Acad Sci 84:5918–5922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Akkawi MT, Shehadeh MM, Shams ANA, Al-Hardan DM, Omar LJ, Almahmoud OH, Qaddumi JAS (2019) Incidence and risk factors of retinopathy of prematurity in three neonatal intensive care units in Palestine. BMC Ophthalmol 19:189. https://doi.org/10.1186/s12886-019-1180-4

    Article  PubMed  PubMed Central  Google Scholar 

  59. Gopinathan V, Miller NJ, Milner AD, Rice-Evans CA (1994) Bilirubin and ascorbate antioxidant activity in neonatal plasma. FEBS Lett 349:197–200. https://doi.org/10.1016/0014-5793(94)00666-0

    Article  CAS  PubMed  Google Scholar 

  60. Hosono S, Ohno T, Kimoto H, Shimizu M, Nozawa M, Genkawa R, Yoshida T, Wada S, Harada K (2002) No clinical correlation between bilirubin levels and severity of retinopathy of prematurity. J Pediatr Ophthalmol Strabismus 39:151–156

    Article  PubMed  Google Scholar 

  61. Rennie JM, Sehgal A, De A, Kendall GS, Cole TJ (2009) Range of UK practice regarding thresholds for phototherapy and exchange transfusion in neonatal hyperbilirubinaemia. Arch Dis Child Fetal Neonatal Ed 94:F323–F327. https://doi.org/10.1136/adc.2008.147686

    Article  CAS  PubMed  Google Scholar 

  62. Rodie M, Barclay A, Harry C, Simpson J (2011) NICE recommendations for the formal assessment of babies with prolonged jaundice: too much for well infants? Arch Dis Child 96:112–113

    Article  CAS  PubMed  Google Scholar 

  63. Shekeeb Shahab M, Kumar P, Sharma N, Narang A, Prasad R (2008) Evaluation of oxidant and antioxidant status in term neonates: a plausible protective role of bilirubin. Mol Cell Biochem 317:51–59. https://doi.org/10.1007/s11010-008-9807-4

    Article  CAS  PubMed  Google Scholar 

  64. Mohagheghi P, Poorsattar A, Jalali A (2008) Bilirubin may protect from severe ROP. Early Hum Dev S47

  65. Fereshtehnejad SM, Mir KPB, Mir APB, Mohagheghi P (2012) Evaluation of the possible antioxidative role of bilirubin protecting from free radical related illnesses in neonates. Acta Med Iran 50(3):153–163

    CAS  PubMed  Google Scholar 

  66. Milner JD, Aly HZ, Ward LB, El-Mohandes A (2003) Does elevated peak bilirubin protect from retinopathy of prematurity in very low birthweight infants. J Perinatol 23:208–211

    Article  PubMed  Google Scholar 

  67. Dani C, Martelli E, Bertini G, Pezzati M, Filippi L, Rossetti M, Rizzuti G, Rubaltelli FF (2003) Plasma bilirubin level and oxidative stress in preterm infants. Arch Dis Child Fetal Neonatal Ed 88:F119–123. https://doi.org/10.1136/fn.88.2.f119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yiğit S, Yurdakök M, Kilin K, Oran O, Erdem G, Tekinalp G (1999) Serum malondialdehyde concentration in babies with hyperbilirubinaemia. Arch Dis Child Fetal Neonatal Ed 80:F235–237. https://doi.org/10.1136/fn.80.3.f235

    Article  PubMed  PubMed Central  Google Scholar 

  69. De Luca D, Jackson GL, Tridente A, Carnielli VP, Engle WD (2009) Transcutaneous bilirubin nomograms: a systematic review of population differences and analysis of bilirubin kinetics. Arch Pediatr Adolesc Med 163:1054–1059

    PubMed  Google Scholar 

  70. Ostfeld-Johns S, Aragona E, Hart L (2022) Removing race from hyperbilirubinemia guidelines is not enough. JAMA Pediatr 176:1163–1164

    Article  PubMed  Google Scholar 

  71. Wright JL, Davis WS, Joseph MM, Ellison AM, Heard-Garris NJ, Johnson TL (2022) Equity ABCo (2022) Eliminating race-based medicine. Pediatrics 150:e2022057998

    Article  PubMed  Google Scholar 

  72. Kemper AR, Newman TB, Slaughter JL, Maisels MJ, Watchko JF, Downs SM, Grout RW, Bundy DG, Stark AR, Bogen DL (2022) Clinical practice guideline revision: management of hyperbilirubinemia in the newborn infant 35 or more weeks of gestation. Pediatrics 150:e2022058859

    Article  PubMed  Google Scholar 

  73. De Luca D, Zecca E, De Turris P, Barbato G, Marras M, Romagnoli C (2007) Using BiliCheck™ for preterm neonates in a sub-intensive unit: diagnostic usefulness and suitability. Early Hum Dev 83:313–317

    Article  PubMed  Google Scholar 

  74. Letamendia-Richard E, Ammar RB, Tridente A, De Luca D (2016) Relationship between transcutaneous bilirubin and circulating unbound bilirubin in jaundiced neonates. Early Hum Dev 103:235–239

    Article  CAS  PubMed  Google Scholar 

  75. Ahlfors CE, Wennberg RP, Ostrow JD, Tiribelli C (2009) Unbound (free) bilirubin: improving the paradigm for evaluating neonatal jaundice. Clin Chem 55:1288–1299

    Article  CAS  PubMed  Google Scholar 

  76. Hegyi T, Kleinfeld A (2022) Neonatal hyperbilirubinemia and the role of unbound bilirubin. J Matern Fetal Neonatal Med 35:9201–9207

    Article  CAS  PubMed  Google Scholar 

  77. Zecca E, Barone G, De Luca D, Marra R, Tiberi E, Romagnoli C (2009) Skin bilirubin measurement during phototherapy in preterm and term newborn infants. Early Hum Dev 85:537–540

    Article  CAS  PubMed  Google Scholar 

  78. Carceller-Blanchard A, Cousineau J, Delvin E (2009) Point of care testing: transcutaneous bilirubinometry in neonates. Clin Biochem 42:143–149

    Article  CAS  PubMed  Google Scholar 

  79. Nanjundaswamy S, Petrova A, Mehta R, Bernstein W, Hegyi T (2004) The accuracy of transcutaneous bilirubin measurements in neonates: a correlation study. Neonatology 85:21–25

    Article  Google Scholar 

  80. **ong T, Qu Y, Cambier S, Mu D (2011) The side effects of phototherapy for neonatal jaundice: what do we know? What should we do? Eur J Pediatr 170:1247–1255

    Article  PubMed  Google Scholar 

  81. Boskabadi H, Kalate M (2018) Effect of phototherapy on pro-oxidant/antioxidant balance in newborns with Jaundice. Biomed Res Ther 5:2432–2439

    Article  Google Scholar 

  82. Aycicek A, Erel O (2007) Total oxidant/antioxidant status in jaundiced newborns before and after phototherapy. J Pediatr (Rio J) 83:319–322

    PubMed  Google Scholar 

  83. Boskabadi H, Shoeibi N, Bagheri F, Pourbadakhshan N, Moradi A, Zakerihamidi M (2023) Potential role of Bilirubin in preventing retinopathy of prematurity. Curr Pediatr Rev 19:197–202

    Article  CAS  PubMed  Google Scholar 

  84. Khatami SF, Yousefi A, Bayat GF, Mamuri G (2008) Retinopathy of prematurity among 1000–2000 gram birth weight newborn infants. Iran J Pediatr 18:137–142

    Google Scholar 

  85. Pillai A, Pandita A, Osiovich H, Manhas D (2020) Pathogenesis and management of indirect hyperbilirubinemia in preterm neonates less than 35 weeks: moving toward a standardized approach. Neoreviews 21:e298–e307

    Article  PubMed  Google Scholar 

  86. Good WV, Hou C (2015) Visuocortical bilirubin-induced neurological dysfunction. Seminars in fetal and neonatal medicine. Elsevier, pp 37–41

    Google Scholar 

Download references

Funding

This study was (partially) funded by the Italian Ministry of Health—Current Research IRCCS.

Author information

Authors and Affiliations

Authors

Contributions

S.G., G.R., M.B.M., G.A., M.F., F.G., S.O., E.V., and G.C. (Giacomo Cavallaro) contributed to the study’s conception and design; S.G., G.R., G.C. (Gaia Cervellini), M.C., V.T., F.G., E.V., and G.C. (Giacomo Cavallaro) contributed to the study’s methodology, investigation, and data curation; S.G., G.C. (Gaia Cervellini), M.C., V.T., M.B.M., and S.O. contributed to data collection; N.P. performed the statistical analysis; S.G., G.C. (Gaia Cervellini), G.R., M.B.M., and G.C. (Giacomo Cavallaro) wrote the initial draft preparation of the manuscript; S.G., G.R., G.C. (Gaia Cervellini), M.B.M., G.A., F.G., E.V., and G.C. (Giacomo Cavallaro) wrote, reviewed, and edited the manuscript; The co-first S.G. and G.C. (Gaia Cervellini), and co-last E.V. and G.C. (Giacomo Cavallaro) authorship contributed equally and have the right to list their name as first or last in their Curriculum Vitae. E.V. and G.C. (Giacomo Cavallaro) contributed equally to the visualization of the manuscript; G.C. (Giacomo Cavallaro) contributed to the supervision and project administration of the study. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Genny Raffaeli.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Communicated by Daniele De Luca

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1 (DOCX 18.3 KB)

Supplementary Material 2 DOCX 15.2 KB

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gulden, S., Cervellini, G., Colombo, M. et al. Hyperbilirubinemia and retinopathy of prematurity: a retrospective cohort study. Eur J Pediatr (2024). https://doi.org/10.1007/s00431-024-05630-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00431-024-05630-3

Keywords

Navigation