Log in

Helminth infections predispose mice to pneumococcal pneumonia but not to other pneumonic pathogens

  • Original Investigation
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

Pneumonia is the leading killer of children worldwide. Here, we report that helminth-infected mice develop fatal pneumonia when challenged with Streptococcus pneumoniae. Mice were chronically infected with either the flatworm Taenia crassiceps or the roundworm Heligmosomoides polygyrus. Upon challenge with a pneumonic type 3 strain of S. pneumoniae (A66.1), the worm-infected mice developed pneumonia at a rate and to a degree higher than age-matched control mice as measured by bioluminescent imaging and lung titers. This predisposition to pneumonia appears to be specific to S. pneumoniae, as worm-infected mice did not show evidence of increased morbidity when challenged with a lethal dose of influenza virus or sublethal doses of Staphylococcus aureus or Listeria monocytogenes. The defect was also present when worm-infected mice were challenged with a type 2 sepsis-causing strain (D39); an increased rate of pneumonia, decreased survival, and increased lung and blood titers were found. Pneumococcal colonization and immunity against acute otitis media were unaffected. Anti-helminthic treatment in the H. polygyrus model reversed this susceptibility. We conclude that helminth coinfection predisposes mice to fatal pneumococcal pneumonia by promoting increased outgrowth of bacteria in the lungs and blood. These data have broad implications for the prevention and treatment for pneumonia in the develo** world, where helminth infections are endemic and pneumococcal pneumonia is common.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Black RE, Cousens S, Johnson HL, Lawn JE, Rudan I, Bassani DG, Jha P, Campbell H, Walker CF, Cibulskis R, Eisele T, Liu L, Mathers C (2010) Global, regional, and national causes of child mortality in 2008: a systematic analysis. Lancet 375:1969–1987

    Article  PubMed  Google Scholar 

  2. Dagan R, Bhutta ZA, de Quadros CA, Garau J, Klugman KP, Khuri-Bulos N, Levine O, Saha SK, Sow S, Were F, Yang Y (2011) The remaining challenge of pneumonia: the leading killer of children. Pediatr Infect Dis J 30:1–2

    Article  PubMed  Google Scholar 

  3. Bundy D, Sher A, Michael E (2000) Good worms or bad worms: do worm infections affect the epidemiological patterns of other diseases? Parasitol Today 16:273–274

    Article  PubMed  CAS  Google Scholar 

  4. Modjarrad K, Vermund SH (2010) Effect of treating co-infections on HIV-1 viral load: a systematic review. Lancet Infect Dis 10:455–463

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wammes LJ, Hamid F, Wiria AE, de Gier B, Sartono E, Maizels RM, Luty AJ, Fillie Y, Brice GT, Supali T, Smits HH, Yazdanbakhsh M (2010) Regulatory T cells in human geohelminth infection suppress immune responses to BCG and Plasmodium falciparum. Eur J Immunol 40:437–442

    Article  PubMed  CAS  Google Scholar 

  6. Minino AM, Heron MP, Murphy SL, Kochanek KD (2007) Deaths: final data for 2004. Natl Vital Stat Rep 55:1–119

    PubMed  Google Scholar 

  7. Hotez PJ (2008) Neglected infections of poverty in the United States of America. PLoS Negl Trop Dis 2:e256

    Article  PubMed  PubMed Central  Google Scholar 

  8. Burton DC, Flannery B, Bennett NM, Farley MM, Gershman K, Harrison LH, Lynfield R, Petit S, Reingold AL, Schaffner W, Thomas A, Plikaytis BD, Rose CE Jr, Whitney CG, Schuchat A (2010) Socioeconomic and racial/ethnic disparities in the incidence of bacteremic pneumonia among US adults. Am J Public Health 100:1904–1911

    Article  PubMed  PubMed Central  Google Scholar 

  9. Spolski RJ, Corson J, Thomas PG, Kuhn RE (2000) Parasite-secreted products regulate the host response to larval Taenia crassiceps. Parasite Immunol 22:297–305

    Article  PubMed  CAS  Google Scholar 

  10. Finney CA, Taylor MD, Wilson MS, Maizels RM (2007) Expansion and activation of CD4(+)CD25(+) regulatory T cells in Heligmosomoides polygyrus infection. Eur J Immunol 37:1874–1886

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Smith MW, Schmidt JE, Rehg JE, Orihuela C, McCullers JA (2007) Induction of pro- and anti-inflammatory molecules in a mouse model of pneumococcal pneumonia following influenza. Comp Med 57:82–89

    PubMed  CAS  PubMed Central  Google Scholar 

  12. McCullers JA, Karlstrom A, Iverson AR, Loeffler JM, Fischetti VA (2007) Novel strategy to prevent otitis media caused by colonizing Streptococcus pneumoniae. PLoS Pathog 3:e28

    Article  PubMed  PubMed Central  Google Scholar 

  13. McCullers JA, Bartmess KC (2003) Role of neuraminidase in lethal synergism between influenza virus and Streptococcus pneumoniae. J Infect Dis 187:1000–1009

    Article  PubMed  CAS  Google Scholar 

  14. McCullers JA (2004) Effect of antiviral treatment on the outcome of secondary bacterial pneumonia after influenza. J Infect Dis 190:519–526

    Article  PubMed  CAS  Google Scholar 

  15. McCullers JA, McAuley JL, Browall S, Iverson AR, Boyd KL, Henriques NB (2010) Influenza enhances susceptibility to natural acquisition of and disease due to Streptococcus pneumoniae in ferrets. J Infect Dis 202:1287–1295

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kofoid CA, Tucker JP (1921) On the relationship of infection by hookworm to the incidence of morbidity and mortality in 22,842 men of the United States army at Camp Bowie, Texas, from October 1917 to April 1918. Am J Epidemiol 1:79–117

    Google Scholar 

  17. Borkow G, Bentwich Z (2004) Chronic immune activation associated with chronic helminthic and human immunodeficiency virus infections: role of hyporesponsiveness and anergy. Clin Microbiol Rev 17:1012–1030

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Borkow G, Leng Q, Weisman Z, Stein M, Galai N, Kalinkovich A, Bentwich Z (2000) Chronic immune activation associated with intestinal helminth infections results in impaired signal transduction and anergy. J Clin Invest 106:1053–1060

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Loukas A, Prociv P (2001) Immune responses in hookworm infections. Clin Microbiol Rev 14:689–703

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Doetze A, Satoguina J, Burchard G, Rau T, Loliger C, Fleischer B, Hoerauf A (2000) Antigen-specific cellular hyporesponsiveness in a chronic human helminth infection is mediated by T(h)3/T(r)1-type cytokines IL-10 and transforming growth factor-beta but not by a T(h)1 to T(h)2 shift. Int Immunol 12:623–630

    Article  PubMed  CAS  Google Scholar 

  21. Jackson JA, Turner JD, Kamal M, Wright V, Bickle Q, Else KJ, Ramsan M, Bradley JE (2006) Gastrointestinal nematode infection is associated with variation in innate immune responsiveness. Microbes Infect 8:487–492

    Article  PubMed  CAS  Google Scholar 

  22. Urban JF Jr, Madden KB, Svetic A, Cheever A, Trotta PP, Gause WC, Katona IM, Finkelman FD (1992) The importance of Th2 cytokines in protective immunity to nematodes. Immunol Rev 127:205–220

    Article  PubMed  CAS  Google Scholar 

  23. Potian JA, Rafi W, Bhatt K, McBride A, Gause WC, Salgame P (2011) Preexisting helminth infection induces inhibition of innate pulmonary anti-tuberculosis defense by engaging the IL-4 receptor pathway. J Exp Med 208:1863–1874

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Chen F, Liu Z, Wu W, Rozo C, Bowdridge S, Millman A, van Nico R, Urban JF Jr, Wynn TA, Gause WC (2012) An essential role for TH2-type responses in limiting acute tissue damage during experimental helminth infection. Nat Med 18:260–266

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Toenjes SA, Spolski RJ, Mooney KA, Kuhn RE (1999) The systemic immune response of BALB/c mice infected with larval Taenia crassiceps is a mixed Th1/Th2-type response. Parasitology 118:623–633

    Article  PubMed  CAS  Google Scholar 

  26. Moreira LO, El Kasmi KC, Smith AM, Finkelstein D, Fillon S, Kim YG, Nunez G, Tuomanen E, Murray PJ (2008) The TLR2-MyD88-NOD2-RIPK2 signalling axis regulates a balanced pro-inflammatory and IL-10-mediated anti-inflammatory cytokine response to gram-positive cell walls. Cell Microbiol 10:2067–2077

    Article  PubMed  CAS  Google Scholar 

  27. Andrade EB, Alves J, Madureira P, Oliveira L, Ribeiro A, Cordeiro-da-Silva A, Correia-Neves M, Trieu-Cuot P, Ferreira P (2013) TLR2-induced IL-10 production impairs neutrophil recruitment to infected tissues during neonatal bacterial sepsis. J Immunol 191:4759–4768

    Article  PubMed  CAS  Google Scholar 

  28. du Plessis N, Kleynhans L, Thiart L, van Helden PD, Brombacher F, Horsnell WG, Walzl G (2013) Acute helminth infection enhances early macrophage mediated control of mycobacterial infection. Mucosal Immunol 6:931–941

    Article  PubMed  Google Scholar 

  29. Sutherland RE, Xu X, Kim SS, Seeley EJ, Caughey GH, Wolters PJ (2011) Parasitic infection improves survival from septic peritonitis by enhancing mast cell responses to bacteria in mice. PLoS One 6:e27564

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. World Health Organization (2005) The World Health Report 2005—make every mother and child count. pp 1–243. http://www.who.int/whr/2005/whr2005_en.pdf

  31. Cooper PJ, Chico ME, Losonsky G, Sandoval C, Espinel I, Sridhara R, Aguilar M, Guevara A, Guderian RH, Levine MM, Griffin GE, Nutman TB (2000) Albendazole treatment of children with ascariasis enhances the vibriocidal antibody response to the live attenuated oral cholera vaccine CVD 103-HgR. J Infect Dis 182:1199–1206

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the American Lebanese Syrian Associated Charities (ALSAC). All authors declare that no conflict of interest exists. We would like to thank Dr. Maureen McGargill for provision of Listeria and helpful discussions on its use, and Ms. Amy Iverson and Melissa Morris for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan A. McCullers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Apiwattanakul, N., Thomas, P.G., Kuhn, R.E. et al. Helminth infections predispose mice to pneumococcal pneumonia but not to other pneumonic pathogens. Med Microbiol Immunol 203, 357–364 (2014). https://doi.org/10.1007/s00430-014-0344-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-014-0344-3

Keywords

Navigation