Log in

Non-neurogenic SVZ-like niche in dolphins, mammals devoid of olfaction

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Adult neurogenesis has been implicated in brain plasticity and brain repair. In mammals, it is mostly restricted to specific brain regions and specific physiological functions. The function and evolutionary history of mammalian adult neurogenesis has been elusive so far. The largest neurogenic site in mammals (subventricular zone, SVZ) generates neurons destined to populate the olfactory bulb. The SVZ neurogenic activity appears to be related to the dependence of the species on olfaction since it occurs at high rates throughout life in animals strongly dependent on this function for their survival. Indeed, it dramatically decreases in humans, who do not depend so much on it. This study investigates whether the SVZ neurogenic site exists in mammals devoid of olfaction and olfactory brain structures, such as dolphins. Our results demonstate that a small SVZ-like region persists in these aquatic mammals. However, this region seems to have lost its neurogenic capabilities since neonatal stages. In addition, instead of the typical newly generated neuroblasts, some mature neurons were observed in the dolphin SVZ. Since cetaceans evolved from terrestrial ancestors, non-neurogenic SVZ may indicate extinction of adult neurogenesis in the absence of olfactory function, with the retention of an SVZ-like anatomical region either vestigial or of still unknown role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aimone JB, Li Y, Lee SW, Clemenson GD, Deng W, Gage FH (2014) Regulation and function of adult neurogenesis: from genes to cognition. Physiol Rev 94:1991–1026

    Article  Google Scholar 

  • Amrein I (2015) Adult hippocampal neurogenesis in natural populations of mammals. Cold Spring Harb Perspect Biol 7(5):a021295

    Article  PubMed  PubMed Central  Google Scholar 

  • Armentano M, Canalia N, Crociara P, Bonfanti L (2011) Culturing conditions affect viability and organization of mouse subventricular zone in ex vivo cultured forebrain slices. J Neurosci Meth 197:65–81

    Article  Google Scholar 

  • Barker JM, Boonstra R, Wojtowicz JM (2011) From pattern to purpose: how comparative studies contribute to understanding the function of adult neurogenesis. Eur J Neurosci 34:963–977

    Article  PubMed  Google Scholar 

  • Bonfanti L (2011) From hydra regeneration to human brain structural plasticity: a long trip through narrowing roads. Sci World J 11:1270–1299

    Article  Google Scholar 

  • Bonfanti L, Nacher J (2012) New scenarios for neuronal structural plasticity in non-neurogenic brain parenchyma: the case of cortical layer II immature neurons. Prog Neurobiol 98:1–15

    Article  PubMed  Google Scholar 

  • Bonfanti L, Peretto P (2011) Adult neurogenesis in mammals—a theme with many variations. Eur J Neurosci 34:930–950

    Article  PubMed  Google Scholar 

  • Bonfanti L, Ponti G (2008) Adult mammalian neurogenesis and the New Zealand white rabbit. Vet J 175:310–331

    Article  PubMed  Google Scholar 

  • Bordiuk OL, Smith K, Morin PJ, Semenov MV (2014) Cell proliferation and neurogenesis in adult mouse brain. PLoS One 9(11):e111453

    Article  PubMed  PubMed Central  Google Scholar 

  • Breathnach AS (1953) The olfactory tubercle, prepyriform cortex and precommisural region of the porpoise (Phocaenaphocaena). J Anat 87:96–113

    CAS  PubMed  PubMed Central  Google Scholar 

  • Breathnach A, Goldby F (1954) The amygdaloid nuclei, hippocampus and other parts of the rhinencephalon in the porpoise (Phocoenaphocoena). J Anat 88:267–291

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown JP, Couillard-Despres S, Cooper-Kuhn CM, Winkler J, Aigner L, Kuhn HG (2003) Transient expression of doublecortin during adult neurogenesis. J Comp Neurol 467:1–10

    Article  CAS  PubMed  Google Scholar 

  • Buhl EH, Oelschläger HA (1986) Ontogenetic development of the nervus terminalis in toothed whales. Evidence for its non-olfactory nature. Anat Embryol 173:285–294

    Article  CAS  PubMed  Google Scholar 

  • Buhl EH, Oelschläger HA (1988) Morphogenesis of the brain in the harbour porpoise. J Comp Neurol 277:109–125

    Article  CAS  PubMed  Google Scholar 

  • Cozzi B, Huggenberger S, Oelschläger HHA (2017) The anatomy of dolphins. Insights into body structure and function. Chapter 6: Brain, Spinal Cord, and Cranial Nerves. Academic Press, London, pp 191–285

    Google Scholar 

  • Dawson MRL, Polito A, Levine JM, Reynolds R (2003) NG2-expressing glial progenitor cells: an abundant and widespread population of cycling cells in the adult rat CNS. Mol Cell Neurosci 24:476–488

    Article  CAS  PubMed  Google Scholar 

  • Del Bigio MR (2011) Cell proliferation in human ganglionic eminence and suppression after prematurity-associated haemorrhage. Brain 134:1344–1361

    Article  PubMed  Google Scholar 

  • Eriksson PS, Perfilieva E, Biork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313–1317

    Article  CAS  PubMed  Google Scholar 

  • Feliciano DM, Bordey A, Bonfanti L (2015) Noncanonical sites of adult neurogenesis in the mammalian brain. Cold Spring Harb Perspect Biol 7(10):a018846

    Article  PubMed  Google Scholar 

  • Fung SJ, Joshi D, Allen KM, Sivagnanasundaram S, Rothmond DA, Saunders R, Noble PL, Webster MJ, Weickert CS (2011) Developmental patterns of doublecortin expression and white matter density in the postnatal primate prefrontal cortex and schizophrenia. PLoS One 6(9):e25194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gingerich PD, Wells NA, Russell DE, Shah SM (1983) Origin of whales in epicontinental remnant seas: new evidence from the early eocene of pakistan. Science 220:403–406

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Climent MA, Castillo-Gomez E, Varea E, Guirado R, Blasco-Ibanez JM, Crespo C, Martinez-Guijarro FJ, Nacher J (2008) A population of prenatallygenerated cells in the rat paleocortex maintains an immature neuronal phenotypeinto adulthood. Cereb Cortex 18:2229–2240

    Article  PubMed  Google Scholar 

  • Grandel H, Brand M (2013) Comparative aspects of adult neural stem cell activity in vertebrates. Dev Genes Evol 223:131–147

    Article  PubMed  Google Scholar 

  • Herzog W, Weber K (1978) Fractionation of brain microtubule-associated proteins. Isolation of two different proteins which stimulate tubulin polymerization in vitro. Eur J Biochem 92:1–8

    Article  CAS  PubMed  Google Scholar 

  • Kee N, Sivalingam S, Boonstra R, Wojtowicz JM (2002) The utility of Ki-67 and BrdU as proliferative markers of adult neurogenesis. J Neurosci Meth 115:97–105

    Article  CAS  Google Scholar 

  • Kempermann G (2012) New neurons for “survival of the fittest”. Nat Rev Neurosci 13:727–736

    CAS  PubMed  Google Scholar 

  • Kempermann G (2016) Adult neurogenesis: an evolutionary perspective. Cold Spring Harb Perspect Biol 8:a018986

    Article  Google Scholar 

  • Kishida T, Thewissen JGM, Hayakawa T, Imai H, Agata K (2015) Aquatic adaptation and the evolution of smell and taste in whales. Zool Lett 1:9

    Article  Google Scholar 

  • Kriegstein A, Alvarez-Buylla A (2009) The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci 32:149–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lepousez G, Valley MT, Lledo PM (2013) The impact of adult neurogenesis on olfactory bulb circuits and computations. Annu Rev Physiol 75:339–363

    Article  CAS  PubMed  Google Scholar 

  • Lois C, Alvarez-Buylla A (1994) Long-distance neuronal migration in the adult mammalian brain. Science 264:1145–1148

    Article  CAS  PubMed  Google Scholar 

  • Lois C, Garcia-Verdugo JM, Alvarez-Buylla A (1996) Chain migration of neuronal precursors. Science 271:978–981

    Article  CAS  PubMed  Google Scholar 

  • Luzzati F, Peretto P, Aimar P, Ponti G, Fasolo A, Bonfanti L (2003) Glia-independent chains of neuroblasts through the subcortical parenchyma of the adult rabbit brain. Proc Natl Acad Sci USA 100:13036–13041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luzzati F, Bonfanti L, Fasolo A, Peretto P (2009) DCX and PSA-NCAM expression identifies a population of neurons preferentially distributed in associative areas of different pallial derivatives and vertebrate species. Cereb Cortex 19:1028–1041

    Article  PubMed  Google Scholar 

  • Marino L, Rilling JK, Lin SK, Ridgway SH (2000) Relative volume of the cerebellum in dolphins and comparison with anthropoid primates. Brain Behav Evol 56:204–211

    Article  CAS  PubMed  Google Scholar 

  • Marriott S, Cowan E, Cohen J, Hallock RM (2013) Somatosensation, echolocation, and underwater sniffing: adaptations allow mammals without traditional olfactory capabilities to forage for food underwater. Zool Sci 30:69–75

    Article  PubMed  Google Scholar 

  • Morgane PJ, Jacobs MS, McFarland WL (1980) The anatomy of the brain of the bottlenose dolphin (Tursiops truncatus). Surface configurations of the telencephalon of the bottlenose dolphin with comparative anatomical observations in four other cetaceans species. Brain Res Bull 5:1–107

    Article  Google Scholar 

  • Nacher J, Crespo C, McEwen BS (2001) Doublecortin expression in the adult rat telencephalon. Eur J Neurosci 14:629–644

    Article  CAS  PubMed  Google Scholar 

  • Obernier K, Tong CK, Alvarez-Buylla A (2014) Restricted nature of adult neural stem cells: re-evaluation of their potential for brain repair. Front Neurosci 8:162

    Article  PubMed  PubMed Central  Google Scholar 

  • Oelschläger HHA (2008) The dolphin brain—a challenge for synthetic neurobiology. Brain Res Bull 75:450–459

    Article  PubMed  Google Scholar 

  • Oelschläger HHA, Oelschläger JS (2009) “Brain”. In: Perrin WF, Würsin B, Thewissen JGM (eds) Encyclopedia of marine mammals, II edn. Academic Press, San Diego, pp 134–149

    Chapter  Google Scholar 

  • Parolisi R, Peruffo A, Messina S, Panin M, Montelli S, Giurisato M, Cozzi B, Bonfanti L (2015) Forebrain neuroanatomy of the neonatal and juvenile dolphin (T. truncatus and S. coeruloalba). Front Neuroanat 9:140

    Article  PubMed  PubMed Central  Google Scholar 

  • Patzke N, Spocter MA, Karlsson KÆ, Bertelsen MF, Haagensen M, Chawana R, Streicher S, Kaswera C, Gilissen E, Alagaili AN, Mohammed OB, Reep RL, Bennett NC, Siegel JM, Ihunwo AO, Manger PR (2015) In contrast to many other mammals, cetaceans have relatively small hippocampi that appear to lack adult neurogenesis. Brain Struct Funct 220: 361–383

    Article  PubMed  Google Scholar 

  • Peretto P, Bonfanti L (2014) Major unsolved points in adult neurogenesis: doors open on a translational future? Front Neurosci 8:154

    Article  PubMed  PubMed Central  Google Scholar 

  • Peretto P, Merighi A, Fasolo A, Bonfanti L (1997) Glial tubes in the rostral migratory stream of the adult rat. Brain Res Bull 42:9–21

    Article  CAS  PubMed  Google Scholar 

  • Peretto P, Giachino C, Aimar P, Fasolo A, Bonfanti L (2005) Chain formation and glial tube assembly in the shift from neonatal to adult subventricular zone of the rodent forebrain. J Comp Neurol 487:407–427

    Article  PubMed  Google Scholar 

  • Ponti G, Aimar P, Bonfanti L (2006a) Cellular composition and cytoarchitecture of the rabbit subventricular zone (SVZ) and its extensions in the forebrain. J Comp Neurol 498:491–507

  • Ponti G, Peretto P, Bonfanti L (2006b) A subpial, transitory germinal zone forms chains of neuronal precursors in the rabbit cerebellum. Dev Biol 294:168–180

  • Ponti G, Obernier K, Guinto C, Jose L, Bonfanti L, Alvarez-Buylla A (2013) Cell cycle and lineage progression of neural progenitors in the ventricular-subventricular zones of adult mice. Proc Nat Acad Sci USA 110:E1045–E1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ridgway SH (1990). The central nervous system of the bottlenose dolphin. In: Leatherwood S, Reeves RR (eds) The Bottlenose Dolphin. Academic Press, USA, pp 69–97

  • Ridgway SH, Demski LS, Bullock TH, Schwanzel-Fukuda M (1987) The terminal nerve in odontocete cetaceans. Ann NY Acad Sci 519:201–212

    Article  CAS  PubMed  Google Scholar 

  • Rolando C, Parolisi R, Boda E, Schwab ME, Rossi F, Buffo A (2012) Distinct roles of Nogo-a and Npogo receptor 1 in the homeostatic regulation of adult neural stem cell function and neuroblast migration. J Neurosci 32:17788–17799

    Article  CAS  PubMed  Google Scholar 

  • Rose KD (2006) The beginning of the age of mammals. JHU Press

  • Sahay A, Wilson DA, Hen R (2011) Pattern separation: a common function for new neurons in hippocampus and olfactory bulb. Neuron 70:582–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakamoto M, Kageyama R, Imayoshi I (2014) The functional significance of newly born neurons integrated into olfactory bulb circuits. Front Neurosci 8:121

    PubMed  PubMed Central  Google Scholar 

  • Sanai N et al (2004) Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 427:740–744

    Article  CAS  PubMed  Google Scholar 

  • Sanai N, Nguyen T, Ihrie RA, Mirzadeh Z, Tsai H-H, Wong M, Gupta N, Berger MS, Huang E, Garcia-Verdugo JM, Rowitch DH, Alvarez-Buylla A (2011) Corridors of migrating neurons in the human brain and their decline during infancy. Nature 478:382–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thewissen JG, Williams EM, Roe LJ, Hussain ST (2001) Skeletons of terrestrial cetaceans and the relationship of whales to artiodactyls. Nature 413:277–281

    Article  CAS  PubMed  Google Scholar 

  • Tong CK, Alvarez-Buylla A (2014) Snapshot: adult neurogenesis in the V-SVZ. Neuron 81:220–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tramontin AD, Garcìa-Verdugo JM, Lim DA, Alvarez-Buylla A (2003) Postnatal development of radial glia and the ventricular zone (VZ): a continuum of the neural stem cell compartment. Cereb Cortex 13:580–587

    Article  PubMed  Google Scholar 

  • Vadoaria KC, Gage FH (2014) Snapshot: adult hippocampal neurogenesis. Cell 156:1114

    Article  Google Scholar 

  • von Bohlen O, Halbach O (2011) Immunohistological markers for proliferative events, gliogenesis, and neurogenesis within the adult hippocampus. Cell Tissue Res 345:1–19

    Article  Google Scholar 

  • Wang C, Liu F, Liu YY, Zhao CH, You Y, Wang L, Zhang J, Wei B, Ma T, Zhang Q, Zhang Y, Chen R, Song H, Yang Z (2011) Identification and characterization of neuroblasts in the subventricular zone and rostral migratory stream of the adult human brain. Cell Res 21:1534–1550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Fondazione CRT for financial support (Bando Ricerca e Istruzione 2014), the University of Turin (PhD programme in Veterinary Sciences), and the MMMTB of the University of Padova for supplying tissue samples of the dolphin brain. Special thanks to Antonella Peruffo, Mattia Panin, Stefano Montelli, Maristella Giurisato for their help in gathering and handling the dolphin brain specimens, to Silvia Messina and Chiara La Rosa for technical help in the cryostat sectioning, and to Telmo Pievani for reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Bonfanti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parolisi, R., Cozzi, B. & Bonfanti, L. Non-neurogenic SVZ-like niche in dolphins, mammals devoid of olfaction. Brain Struct Funct 222, 2625–2639 (2017). https://doi.org/10.1007/s00429-016-1361-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-016-1361-3

Keywords

Navigation