Log in

Clinicopathologic and molecular characterization of melanomas mutated for CTNNB1 and MAPK

  • Brief Report
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Wnt/β-catenin signaling plays crucial roles in melanocyte biology and may be implicated in melanoma progression. In this study, we retrospectively examined a real-life cohort of melanomas mutated for β-catenin (CTNNB1), in association or not with a MAPK mutation (of BRAF or NRAS), and analyzed their clinical, histopathological, and molecular characteristics. Our results indicate that, regardless of the presence of a concurrent MAPK mutation, CTNNB1mut cutaneous primary melanomas display more proliferative hallmarks (increased Breslow thickness, mitotic index, and ulceration) than their CTNNB1 wild-type counterparts. Accordingly, they often progress to the metastatic stage. Furthermore, concurrent CTNNB1 and MAPK mutations do not necessarily confer a deep penetrating nevi phenotype. Altogether, this study provides evidence that CTNNB1 mutations in melanomas are associated with specific clinical and pathological features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Data availability

All data that support the conclusions are available from the authors on request.

Abbreviations

ALM:

Acral lentiginous melanoma

CTNNB1:

β-Catenin

CR:

Complete response

DPN:

Deep penetrating nevus

DPNM:

Deep penetrating nevus-like melanoma

TIL:

Tumor-infiltrating lymphocytes

LMM:

Lentigo maligna melanoma

MAPK:

Mitogen-activated protein kinase

mut:

Mutated

NA:

Not applicable

NGS:

Next-generation sequencing

NM:

Nodular melanoma

PD:

Progressive disease

PR:

Partial response

SSM:

Superficial spreading melanoma

wt:

Wild-type

References

  1. Nusse R, Clevers H (2017) Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell 169:985–999. https://doi.org/10.1016/j.cell.2017.05.016

    Article  CAS  PubMed  Google Scholar 

  2. Hari L, Brault V, Kléber M et al (2002) Lineage-specific requirements of β-catenin in neural crest development. J Cell Biol 159:867–880. https://doi.org/10.1083/jcb.200209039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dunn KJ, Williams BO, Li Y, Pavan WJ (2000) Neural crest-directed gene transfer demonstrates Wnt1 role in melanocyte expansion and differentiation during mouse development. Proc Natl Acad Sci U S A 97:10050–10055. https://doi.org/10.1073/pnas.97.18.10050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gao C, Wang Y, Broaddus R et al (2018) Exon 3 mutations of CTNNB1 drive tumorigenesis: a review. Oncotarget 9:5492–5508. https://doi.org/10.18632/oncotarget.23695

    Article  PubMed  Google Scholar 

  5. Palmieri G, Colombino M, Casula M et al (2018) Molecular pathways in melanomagenesis: what we learned from next-generation sequencing approaches. Curr Oncol Rep 20:86. https://doi.org/10.1007/s11912-018-0733-7

    Article  PubMed  PubMed Central  Google Scholar 

  6. Delmas V, Beermann F, Martinozzi S et al (2007) Beta-catenin induces immortalization of melanocytes by suppressing p16INK4a expression and cooperates with N-Ras in melanoma development. Genes Dev 21:2923–2935. https://doi.org/10.1101/gad.450107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Damsky WE, Curley DP, Santhanakrishnan M et al (2011) β-catenin signaling controls metastasis in Braf-activated Pten-deficient melanomas. Cancer Cell 20:741–754. https://doi.org/10.1016/j.ccr.2011.10.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chien AJ, Moore EC, Lonsdorf AS et al (2009) Activated Wnt/ss-catenin signaling in melanoma is associated with decreased proliferation in patient tumors and a murine melanoma model. Proc Natl Acad Sci 106:1193–1198. https://doi.org/10.1073/pnas.0811902106

    Article  PubMed  PubMed Central  Google Scholar 

  9. Birkeland E, Zhang S, Poduval D et al (2018) Patterns of genomic evolution in advanced melanoma. Nat Commun 9:2665. https://doi.org/10.1038/s41467-018-05063-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Biechele TL, Kulikauskas RM, Toroni RA et al (2012) Wnt/ -catenin signaling and AXIN1 regulate apoptosis triggered by inhibition of the mutant kinase BRAFV600E in human melanoma. Sci Signal 5:ra3. https://doi.org/10.1126/scisignal.2002274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Spranger S, Bao R, Gajewski TF (2015) Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature 523:231–235. https://doi.org/10.1038/nature14404

    Article  CAS  PubMed  Google Scholar 

  12. Yeh I, Lang UE, Durieux E et al (2017) Combined activation of MAP kinase pathway and β-catenin signaling cause deep penetrating nevi. Nat Commun 8:644. https://doi.org/10.1038/s41467-017-00758-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. de la Fouchardière A, Caillot C, Jacquemus J et al (2019) β-Catenin nuclear expression discriminates deep penetrating nevi from other cutaneous melanocytic tumors. Virchows Arch 474:539–550. https://doi.org/10.1007/s00428-019-02533-9

    Article  CAS  PubMed  Google Scholar 

  14. Hoek KS, Schlegel NC, Brafford P et al (2006) Metastatic potential of melanomas defined by specific gene expression profiles with no BRAF signature. Pigment Cell Res 19:290–302. https://doi.org/10.1111/j.1600-0749.2006.00322.x

    Article  CAS  PubMed  Google Scholar 

  15. Hoek KS, Eichhoff OM, Schlegel NC et al (2008) In vivo switching of human melanoma cells between proliferative and invasive states. Cancer Res 68:650–656. https://doi.org/10.1158/0008-5472.CAN-07-2491

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all members of the dermato-oncology medical team of Saint Louis Hospital working with melanoma patients.

Author information

Authors and Affiliations

Authors

Contributions

M.B. conceived the study and designed the experiments. B.O., S.M., B.B., F.J., J.D., B.L., A.G., C.L., and M.B. collected data, performed experiments, and analyzed data. B.O. and M.B. wrote the manuscript with input from all the authors.

Corresponding author

Correspondence to Maxime Battistella.

Ethics declarations

This study was performed after establishing the absence of registered opposition to the use of clinical and pathological data and tissue samples in accordance with French Bioethics Law for retrospective noninterventional research studies.

Conflict of interest

The authors declare no conflict of interest regarding the publication of this article. B.O. declares grants to attend congresses from Novartis and BMS. A.G. and F.J. declare no conflict of interest. C.L. declares a consulting role for Amgen, BMS, MSD, Novartis, and Roche, research funding from BMS and Roche, honoraria from Amgen, BMS, Incyte, MSD, Novartis, Pfizer, Pierre Fabre and Roche, and travel accommodations from BMS. S.M. declares a consulting role for Novartis, Biocartis, and Roche and research funding from Biocartis. M.B. declares honoraria from Innate Pharma, Takeda, BMS, and Leo Pharma.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Table 1

Genes targeted in the customized NGS panel (XLSX 12 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oulès, B., Mourah, S., Baroudjian, B. et al. Clinicopathologic and molecular characterization of melanomas mutated for CTNNB1 and MAPK. Virchows Arch 480, 475–480 (2022). https://doi.org/10.1007/s00428-021-03119-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-021-03119-0

Keywords

Navigation