Log in

Unpredicted, rapid and unintended structural and functional changes occurred during early domestication of Silphium integrifolium, a perennial oilseed

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Main conclusion

Selection for increased yield changed structure, physiology and overall resource-use strategy from conservative towards acquisitive leaves. Alternative criteria can be considered, to increase yield with less potentially negative traits.

Abstract

We compared the morphology, anatomy and physiology of wild and semi-domesticated (SD) accessions of Silphium integrifolium (Asteraceae), in multi-year experiments. We hypothesized that several cycles of selection for seed-yield would result in acquisitive leaves, including changes predicted by the leaf economic spectrum. Early-selection indirectly resulted in leaf structural and functional changes. Leaf anatomy changed, increasing mesophyll conductance and the size of xylem vessels and mesophyll cells increased. Leaves of SD plants were larger, heavier, with lower stomatal conductance, lower internal CO2 concentration, and lower resin concentration than those of wild types. Despite increased water use efficiency, SD plants transpired 25% more because their increase in leaf area. Unintended and undesired changes in functional plant traits could quickly become fixed during domestication, shortening the lifespan and increasing resource consumption of the crop as well as having consequences in the provision and regulation of ecosystem services.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data supporting these results are available and can be provided by the authors.

Abbreviations

A :

Instantaneous CO2 uptake (µmol m2 s1)

C i :

Internal CO2 concentration (µmol mol1)

E :

Instantaneous transpiration rate (mmol m2 s1)

g m :

Mesophyll conductance (μmol m2 s1 Pa1)

g s :

Stomatal conductance (mol m2 s1)

J :

Electron transport rate (mol CO2 m2 s1)

SD:

Semi-domesticated plant

SLA:

Specific leaf area (cm2 g1)

TPU:

Triose phosphate utilization (mol CO2 m2 s1)

V cmax :

Maximum RuBP carboxylation capacity (mol m2 s1 CO2)

W :

Wild plant

Γ :

Carbon compensation point (μmol mol1)

References

  • Aber JD, Melillo JM, Mcclaugherty CA (1990) Predicting long-term patterns of mass loss, nitrogen dynamics, and soil matter formation from initial fine litter chemistry in temperate forest ecosystems. Can J Bot 68:2201–2208

    Article  Google Scholar 

  • Aerts R, Chapin FS (1999) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv Ecol Res 30:1–67. https://doi.org/10.1016/S0065-2504(08)60016-1

    Article  Google Scholar 

  • Austin AT, Yahdjian L, Stark J, Belnap MJ, Porporato AU, Norton U et al (2004) Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia 141:221–235

    Article  PubMed  Google Scholar 

  • Brouillette LC, Mason CM, Shirk RY, Donovan LA (2014) Adaptive differentiation of traits related to resource use in a desert annual along a resource gradient. New Phytol 201:1316–1327

    Article  PubMed  Google Scholar 

  • Castañeda VL, Marlon de la Peña A, Aranjuelo I, Gonzalez EM (2019) Functional analysis of the taproot and fibrous roots of Medicago truncatula: sucrose and proline catabolism primary response to water deficit. Agric Water Manag 216:473–483

    Article  Google Scholar 

  • Cates AM, Ruark MD, Hedtcke JL, Posner JL (2016) Long-term tillage, rotation and perennialization effects on particulate and aggregate soil organic matter. Soil Tillage Res 155:371–380

    Article  Google Scholar 

  • Chacón-Fuentes M, Parra L, Rodriguez-Saona C, Seguel I, Ceballos R, Quiroz A (2015) Domestication in murtilla (Ugni molinae) reduced defensive flavonol levels but increased resistance against a native herbivorous insect. Environ Entomol 44:627–637

    Article  PubMed  Google Scholar 

  • Coley PD, Bryant JP, Chapin FSIII (1985) Resource availability and plant antiherbivore defense. Science 230:895–899

    Article  CAS  PubMed  Google Scholar 

  • Connor DJ, Loomis RS, Cassman KG (2011) Crop ecology. Productivity and management in agricultural systems. Cambridge University Press, Cambridge (ISBN: 9780521744034)

    Book  Google Scholar 

  • Cornell WK, Cornelissen HC (2013) A broader perspective on plant domestication and nutrient and carbon cycling. New Phytol 198:331–333

    Article  Google Scholar 

  • Cox TS, Bender MH, Picone C, Van Tassel DL, Holland JB, Brummer EC, Zoeller BE, Paterson AH, Jackson W (2002) Breeding perennial grain crops. Crit Rev Plant Sci 21:59–91

    Article  Google Scholar 

  • Cox TS, Glover JD, Van Tassel DL, Cox CM, DeHaan LR (2006) Prospects for develo** perennial grain crops. Bioscience 56:649–659

    Article  Google Scholar 

  • DeHaan LR, Van Tassel DL, Cox TS (2005) Perennial grain crops: a synthesis of ecology and plant breeding. Renew Agric Food Syst 20:5–14

    Article  Google Scholar 

  • Denison RF (2012) Darwinian agriculture: How understanding evolution can improve agriculture. Princeton University Press, Princeton

    Book  Google Scholar 

  • Deyn GB, Cornelissen JHC, Bardgett RD (2008) Plan functional traits and soil carbon sequestration in contrasting biomes. Ecol Lett 11:1–16

    Google Scholar 

  • Diamond J (2002) Evolution, consequences and future of plant and animal domestication. Nature 418:700–707

    Article  CAS  PubMed  Google Scholar 

  • Diaz S, Hodgson JG, Thompson K et al (2004) The plant traits that drive ecosystems: evidence from three continents. J Veg Sci 15:295–304

    Article  Google Scholar 

  • Diaz S, Kattge JM, Kleyer C, Wirth IC, Prentice E, Garnier G, Bönisch M, Westoby M (2016) The global spectrum of plant form and function. Nature 529:167–171

    Article  CAS  PubMed  Google Scholar 

  • Donovan L, Maherali H, Caruso C, Huber H, Kroon H (2011) The evolution of the world-wide leaf economic spectrum. Trends Ecol Evol 26:86–95

    Article  Google Scholar 

  • Evans LT (1993) Crop evolution, adaptation and yield. Cambridge University Press, Cambridge

    Google Scholar 

  • Farquhar GD, Von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90

    Article  CAS  PubMed  Google Scholar 

  • Flexas J (2016) Genetic improvement of leaf photosynthesis and intrinsic water use efficiency in C3 plants: why so much little success? Plant Sci 251:155–161

    Article  CAS  PubMed  Google Scholar 

  • García-Palacios P, Milla R, Delgado-Baquerizo R, Martin-Robles M, Alvaro-Sanchez N, Wall DH (2013) Side-effects of plant domestication: ecosystem impacts of change litter quality. New Phytol 198:504–513

    Article  PubMed  Google Scholar 

  • Gepts P (2004) Crop domestication as a long-term selection experiment. In: Janick J (ed) Plant breeding review, vol 24, part 2, pp 1–44. Wiley, New York (ISBN 0-471-46892-4)

  • Gifford RM, Evans LT (1981) Photosynthesis, carbon partitioning and yield. Annu Rev Plant Physiol 32:485–509

    Article  CAS  Google Scholar 

  • Glover JD, Reganold JP (2010) Perennial grains food security for the future. Issues Sci Technol 26:2

    Google Scholar 

  • Gols R, Bukovinszky T, Van Dam NM, Dicke M, Bullock JM, Harvey JA (2008) Performance of generalist and specialist herbivores and their endoparasitoids differs on cultivated and wild Brassica populations. J Chem Ecol 34:132–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • González A, Lynch J, Tohme J, Beebe S, Macchiavelli R (1995) Characters related to leaf photosynthesis in wild populations and landraces of common bean. Crop Sci 35:1468–1476

    Article  Google Scholar 

  • Gonzalez-Paleo L, Ravetta DA (2011) Relationships between reproductive output, morpho-physiological traits and life span in Lesquerella (Brassicaceae). Ind Crops Prod 34:1386–1392

    Article  Google Scholar 

  • Gonzalez-Paleo L, Ravetta DA (2015) Comparison of growth and carbon use strategy of annual and perennial species of desert forbs. Flora 21:1–9

    Google Scholar 

  • Gonzalez-Paleo L, Vilela AE, Ravetta DA (2016) Back to perennials: does selection enhance tradeoffs between yield and longevity? Ind Crops Prod 91:272–278

    Article  Google Scholar 

  • Gonzalez-Paleo L, Pastor-Pastor A, Rajnoch G, Ravetta DA (2019) Mechanisms of nitrogen conservation at the leaf-level in annual and perennial desert forbs: implications for perennial crops domestication. Flora 252:62–68

    Article  Google Scholar 

  • Gonzalez-Paleo L, Ravetta DA, Van Tassel D (2022) From leaf traits to agroecosystem functioning: effects of changing resource use strategy during Silphium domestication on litter quality and decomposition rate. Plant Soil 471(1–2):1–13

    Google Scholar 

  • Harlan RS (1973) Comparative evolution of cereals. Evolution 27:311–325

    Article  PubMed  Google Scholar 

  • Jaikumar NS, Snapp SS, Sharkey TD (2013) Life history and resource acquisition: photosynthetic traits in selected accessions of three perennial cereal species compared with annual wheat and rye. Am J Bot 100:2468–2477

    Article  PubMed  Google Scholar 

  • Kantar M, Tyl C, Dorn K, Zhang X, Jungers J, Kaser JM et al (2016) Perennial grain and oilseed crops. Annu Rev Plant Biol 67:703–729

    Article  CAS  PubMed  Google Scholar 

  • Long SP, Bernachi CJ (2003) Gas exchange measurements, what can they tell us about the underlying limitations in photosynthesis?. Procedures and sources of error. J Exp Bot 54:2393–2401

    Article  CAS  PubMed  Google Scholar 

  • Long SP, Zhu XG, Naidu SL, Ort DR (2006) Can improvement in photosynthesis increase crop yields? Plant Cell Environ 29:315–330

    Article  CAS  PubMed  Google Scholar 

  • Meyer RS, DuVal AE, Jensen HR (2012) Patterns and processes in crop domestication: An historical review and quantitative analysis of 203 global food crops. New Phytol 196:29–48

    Article  PubMed  Google Scholar 

  • Milla R, Matesanz S (2017) Growing larger with domestication: a matter of physiology, morphology or allocation. Plant Biol 19:475–483

    Article  CAS  PubMed  Google Scholar 

  • Milla R, Vico N, Martin-Robles N (2013) Shifts in stomatal traits following the domestication of plant species. J Exp Bot 64:3137–3146

    Article  CAS  PubMed  Google Scholar 

  • Milla R, Morente-López J, Alonso-Rodrigo JM, Martín-Robles N, Chapin FS (2014) Shifts and disruptions in resource-use trait syndromes during the evolution of herbaceous crops. Proc R Soc Lond B Biol Sci 281(1793):20141429. https://doi.org/10.1098/rspb.2014.1429

    Article  Google Scholar 

  • Milla R, Osborne C, Turcotte M, Violle C (2015) Plant domestication through an ecological lens. Trends Ecol Evol 30:463–469

    Article  PubMed  Google Scholar 

  • Mondolot L, Marlas A, Barbeau D, Gargadennec A, Pujol B, McKey D (2008) Domestication and defense: foliar tannins and C/N ratios in cassava and a close wild relative. Acta Oecol 34:147–154

    Article  Google Scholar 

  • Muir CD, Conesa M, Roldán EJ, Molins A, Galmés J (2016) Weak coordination between leaf structure and function among closely related tomato species. New Phytol 213:1642–1653

    Article  PubMed  Google Scholar 

  • Niinemets U, Cescatti A, Rodeghiero M, Tosens T (2006) Complex adjustments of photosynthetic capacity and internal mesophyll conductance to current and previous light availabilities and leaf age in Mediterranean evergreen species Quercus ilex. Plant Cell Environ 29:1159–1178

    Article  CAS  PubMed  Google Scholar 

  • Pastor-Pastor A, Vilela AE, González-Paleo L (2018a) The root of the problem of perennials domestication: is selection for yield changing key root system traits required for ecological sustainability? Plant Soil 435:161–174

    Article  Google Scholar 

  • Pastor-Pastor A, Vilela AE, González-Paleo L (2018b) Tradeoffs between productivity and nitrogen conservation in wild and domesticated plants of the perennial crop Physaria (Brassicaceae). Ann App Biol 173:121–132

    Article  CAS  Google Scholar 

  • Pimentel D, Cerasale D, Stanley RC, Perlman R, Newman EM, Brent LC et al (2012) Annual vs perennial grain production. Agric Ecosyst Environ 161:1–9

    Article  Google Scholar 

  • Poorter H, De Jong R (1999) A comparison of specific leaf area, chemical composition and leaf construction costs of field plants from 15 habitats differing in productivity. New Phytol 143:163–176

    Article  CAS  Google Scholar 

  • Poorter H, Garnier E (1999) Ecological significance of inherent variation in relative growth rate and its components. In: Pugnaire FI, Valladares F (eds) Handbook of plant functional ecology. Marcel Dekker, New York, pp 81–120

    Google Scholar 

  • Pujol B, Salager JL, Beltran M, Bousquet S, McKey D (2008) Photosynthesis and leaf structure in domesticated Cassava (Euphorbiaceae) and a close wild relative: have leaf photosynthetic parameters evolved under domestication? Biotropica 40:305–312

    Article  Google Scholar 

  • Ravetta DA, Soriano A (1998) Alternatives for the development of new industrial crops for Patagonia. Ecologia Austral 8:297–307

    Google Scholar 

  • Reich PB (1998) Variation among plant species in leaf turnover rates and associated traits: implications for growth at all life stages. In: Lambers H, Poorter H, Van Vuuren MM (eds) Inherent variation in plant growth. Physiological mechanisms and ecological consequences. Backhuys Publishers, Leiden, pp 467–487

    Google Scholar 

  • Reich PB, Walters MB, Ellsworth DS (1997) From tropics to tundra: global convergence in plant functioning. Proc Natl Acad Sci USA 94:13730–13734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scales FM, Harrison AP (1920) Boric acid modification of the Kjeldahl method for crop and soil analysis. J Ind Eng Chem 12:350–352

    Article  CAS  Google Scholar 

  • Schlichting CD (1989) Phenotypic interaction and environmental change. Bioscience 39:460–464

    Article  Google Scholar 

  • Sharkey TD (2016) What gas exchange data can tell us about photosynthesis? Plant Cell Environ 39:1161–1163

    Article  CAS  PubMed  Google Scholar 

  • Sharkey TD, Bernacchi CJ, Farquhar GD, Singsaas EL (2007) Fitting photosynthetic carbon dioxide response curves for C3 leaves. Plant Cell Environ 30:1035–1040

    Article  CAS  PubMed  Google Scholar 

  • Van Tassel DL, Asselin SR, Cox SA, Sideli G, Cattani DJ (2014) Evaluating perennial candidates for domestication: lessons from wild sunflower relatives. In: Batello C, Wade L, Cox S, Pogna N, Bozzini A, Choptiany J (eds) Perennial crops for food security. Proceedings of the FAO expert workshop, FAO, Rome, pp 112–140

  • Terashima I, Hanba YT, Tazoe Y, Vyas P, Yano S (2006) Irradiance and phenotype: comparative eco-development of sun and shade leaves in relation to photosynthetic CO2 diffusion. J Exp Bot 57:343–354

    Article  CAS  PubMed  Google Scholar 

  • Terashima I, Hanba YT, Tholen D, Niinemets Ü (2011) Leaf functional anatomy in relation to photosynthesis. Plant Physiol 155:108–116

    Article  CAS  PubMed  Google Scholar 

  • Tholen D, Boom C, Zhu XG (2012) Opinion: prospects for improving photosynthesis by altering leaf anatomy. Plant Sci 197:92–101

    Article  CAS  PubMed  Google Scholar 

  • Turcotte M, Nash M, Turley E, Johnson MTJ (2014) The impact of domestication on resistance to two generalist herbivores across 29 independent domestication events. New Phytol 204:671–681

    Article  PubMed  Google Scholar 

  • Turner MK, Ravetta DA, Van Tassel DL (2018) Effect of Puccinia silphii on yield components and leaf physiology in Silphium integrifolium: lessons for the domestication of a perennial oilseed crop. Sustainability 10:1–12

    Article  Google Scholar 

  • Van Tassel DL, DeHaan LR, Cox TS (2010) Missing domesticated plant forms: can artificial selection fill the gap? Evol App 3:434–452

    Article  Google Scholar 

  • Vico G, Manzoni S, Nkurunziza L, Murphy K, Weih M (2016) Trade-offs between seed output and life span—a quantitative comparison of traits between annual and perennial congeneric species. New Phytol 209:104–114. https://doi.org/10.1111/nph.13574

    Article  CAS  PubMed  Google Scholar 

  • Vilela AE, González-Paleo L (2015) Changes in resource-use strategy and phenotypic plasticity associated with selection for yield in wild species native to arid environments. J Arid Environ 113:51–58

    Article  Google Scholar 

  • Vilela AE, González-Paleo L, Turner K, Peterson K, Ravetta DA, Crews TE, Van Tassel DL (2018) Progress and bottlenecks in the early domestication of the perennial oilseed Silphium integrifolium, a sunflower substitute. Sustainability 10:638

    Article  Google Scholar 

  • Wacker L, Jacomet S, Korner C (2002) Trends in biomass fractionation in wheat and barley from wild ancestors to modern cultivars. Plant Biol 4:258–265

    Article  Google Scholar 

  • Westoby M, Falster DS, Moles AT et al (2002) Plant ecological strategies: some leading dimensions of variation between species. Annu Rev Ecol Evol Syst 33:125–159

    Article  Google Scholar 

  • Whitehead SR, Turcotte MM, Poveda K (2017) Domestication impacts on plant–herbivore interactions: a meta-analysis. Philos Trans R Soc B Biol Sci 372:20160034. https://doi.org/10.1098/rstb.2016.0034

    Article  Google Scholar 

  • Wink M (1998) Plant breeding: importance of plant secondary metabolites for protection against pathogens and herbivores. Theor Appl Genet 75:225–233

    Article  Google Scholar 

  • Wright IJ, Reich PB, Westoby M et al (2004) The worldwide leaf economics spectrum. Nature 428:821–827

    Article  CAS  PubMed  Google Scholar 

  • Zavala J, Ravetta DA (2001) The effect of irrigation regime on biomass and resin production in Grindelia chiloensis. Field Crops Res 69:227–236

    Article  Google Scholar 

  • Zavala J, Ravetta DA (2002) The effect of solar U-V radiation on biomass partition, growth and resin production on Grindelia chiloensis. Plant Ecol 16:185–191

    Article  Google Scholar 

  • Zohary D (2004) Unconscious selection and the evolution of domesticated plants. Econ Bot 58:5–10

    Article  Google Scholar 

Download references

Funding

This work was also partially funded by PIP 112 2015 0100665CO and PIP 2021-2023 CONICET 11220200100576 (PI: Alejandra Vilela). We gratefully acknowledge support from the Perennial Agriculture Project, a joint project between The Land Institute and The Malone Family Land Preservation Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Ravetta.

Ethics declarations

Conflict of interest

Neither author has any conflict of interest.

Additional information

Communicated by Dorothea Bartels.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 85 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravetta, D.A., Vilela, A.E., Gonzalez-Paleo, L. et al. Unpredicted, rapid and unintended structural and functional changes occurred during early domestication of Silphium integrifolium, a perennial oilseed. Planta 258, 18 (2023). https://doi.org/10.1007/s00425-023-04179-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-023-04179-z

Keywords

Navigation