Log in

Zinc supply influenced the growth, yield, zinc content, and expression of ZIP family transporters in sorghum

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Zinc deficiency altered shoot and root growth, plant biomass, yield, and ZIP family transporter gene expression in sorghum.

Abstract

Zinc (Zn) deficiency affects several crop plants' growth and yield, including sorghum. We have evaluated the sorghum under various concentrations of Zn supply for phenotypic changes, Zn content, and expression of Zn-regulated, iron-regulated transporter-like proteins (ZIP) family genes. Zn deficiency reduced the shoot and root growth, plant biomass, and yield by > 50%. The length and number of lateral roots were increased by more than 50% under deficient Zn compared to sufficient Zn. Ten SbZIP family transporter genes showed dynamic expression in shoot and root tissues of sorghum under deficient and sufficient Zn. SbZIP2, 5, 6, 7, and 8 were expressed in all tissues under deficient and sufficient Zn. SbZIP2, 4, 5, 6, 7, 8, and 10 were highly induced in shoot tissues by deficient Zn. The expression level of SbZIP6, 7, 8, and 9 was higher in root tissues under deficient Zn. The phylogenetic analysis revealed that most SbZIP family proteins are closely associated with the ZmZIP family of maize. The functional residues His177 and Gly182 are fully conserved in all SbZIP family transporters, as revealed by homology modeling and multiple sequence alignment. This study may provide a foundation for improving the Zn-use efficiency of sorghum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article.

Abbreviations

MC:

Main cluster

SDW:

Shoot dry weight

RDW:

Root dry weight

SL:

Shoot length

PRL:

Primary root length

SW:

Seed weight

TMDs:

Transmembrane domains

LRL:

Lateral root length

LRN:

Lateral root number

ZIP:

Zn-regulated, iron-regulated transporter-like proteins

References

  • Abah CR, Ishiwu CN, Obiegbuna JE, Oladejo AA (2020) Sorghum grains: nutritional composition, functional properties and its food applications. Eur J Nutr Food Saf 12:101–111

    Article  Google Scholar 

  • Alagarasan G, Dubey M, Aswathy KS, Chandel G (2017) Genome wide identification of orthologous ZIP genes associated with zinc and iron translocation in Setaria italica. Front Plant Sci 8:775

    Article  Google Scholar 

  • Amini S, Arsova B, Hanikenne M (2022) The molecular basis of zinc homeostasis in cereals. Plant Cell Environ 45:1339–1361

    Article  CAS  Google Scholar 

  • Bashir K, Ishimaru Y, Nishizawa NK (2012) Molecular mechanisms of zinc uptake and translocation in rice. Plant Soil 361:189–201

    Article  CAS  Google Scholar 

  • Cakmak I, Sari NE, Marschner H, Kalayci M, Yilmaz A, Eker SE, Gulut KY (1996) Dry matter production and distribution of zinc in bread and durum wheat genotypes differing in zinc efficiency. Plant Soil 180:173–181

    Article  CAS  Google Scholar 

  • Ceasar SA, Hodge A, Baker A, Baldwin SA (2014) Phosphate concentration and arbuscular mycorrhizal colonisation influence the growth, yield and expression of twelve PHT1 family phosphate transporters in foxtail millet (Setaria italica). PLoS ONE 9:e108459

    Article  Google Scholar 

  • Ceasar SA, Maharajan T, Hillary E, Krishna TPA (2022) Insights to improve the plant nutrient transport by CRISPR/Cas system. Biotechn Adv 59:107963

    Article  CAS  Google Scholar 

  • Chen WR, Feng Y, Chao YE (2008) Genomic analysis and expression pattern of OsZIP1, OsZIP3, and OsZIP4 in two rice (Oryza sativa L.) genotypes with different zinc efficiency. Russ J Plant Physiol 55:400–409

    Article  CAS  Google Scholar 

  • Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212:475–486

    Article  CAS  Google Scholar 

  • Conte SS, Walker EL (2011) Transporters contributing to iron trafficking in plants. Mol Plant 4:464–476

    Article  CAS  Google Scholar 

  • Cooper EA, Brenton ZW, Flinn BS, Jenkins J, Shu S, Flowers D, Kresovich S (2019) A new reference genome for Sorghum bicolor reveals high levels of sequence similarity between sweet and grain genotypes: implications for the genetics of sugar metabolism. BMC Genomics 20:420

    Article  Google Scholar 

  • Eide D, Broderius M, Fett J, Lou GM (1996) A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc Natl Acad Sci USA 93:5624–5628

    Article  CAS  Google Scholar 

  • Evens NP, Buchner P, Williams LE, Hawkesford MJ (2017) The role of ZIP transporters and group F bZIP transcription factors in the Zn-deficiency response of wheat (Triticum aestivum). Plant J 92:291–304

    Article  CAS  Google Scholar 

  • Genc Y, McDonald GK, Graham RD (2004) Differential expression of zinc efficiency during the growing season of barley. Plant Soil 263:273–282

    Article  CAS  Google Scholar 

  • Genc Y, Huang CY, Langridge P (2007) A study of the role of root morphological traits in growth of barley in zinc-deficient soil. J Exp Bot 58:2775–2784

    Article  CAS  Google Scholar 

  • Gerrano AS, Labuschagne MT, van Biljon A, Shargie NG (2014) Genetic variability among sorghum accessions for seed starch and stalk total sugar content. Sci Agric 71:472–479

    Article  Google Scholar 

  • Gupta N, Ram H, Kumar B (2016) Mechanism of zinc absorption in plants: uptake, transport, translocation and accumulation. Rev Environ Sci Biotechnol 15:89–109

    Article  CAS  Google Scholar 

  • Hall JL, Williams LE (2003) Transition metal transporters in plants. J Exp Bot 54:2601–2613

    Article  CAS  Google Scholar 

  • Huang S, Sasaki A, Yamaji N, Okada H, Mitani-Ueno N, Ma JF (2020) The ZIP transporter family member OsZIP9 contributes to root zinc uptake in rice under zinc-limited conditions. Plant Physiol 183:1224–1234

    Article  CAS  Google Scholar 

  • Impa SM, Gramlich A, Tandy S, Schulin R, Frossard E, Johnson-Beebout SE (2013) Internal Zn allocation influences Zn deficiency tolerance and grain Zn loading in rice (Oryza sativa L.). Front Plant Sci 4:534

    Article  Google Scholar 

  • Ishimaru Y, Suzuki M, Kobayashi T, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2005) OsZIP4, a novel zinc-regulated zinc transporter in rice. J Exp Bot 56:3207–3214

    Article  CAS  Google Scholar 

  • Ishimaru Y, Masuda H, Suzuki M, Bashir K, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2007) Overexpression of the OsZIP4 zinc transporter confers disarrangement of zinc distribution in rice plants. J Exp Bot 58:2909–2915

    Article  CAS  Google Scholar 

  • Ji C, Li J, Jiang C, Zhang L, Shi L, Xu F, Cai H (2022) Zinc and nitrogen synergistic act on root-to-shoot translocation and preferential distribution in rice. J Adv Res 35:187–198

    Article  CAS  Google Scholar 

  • Kolaj-Robin O, Russell D, Hayes KA, Pembroke JT, Soulimane T (2015) Cation diffusion facilitator family: structure and function. FEBS Lett 589:1283–1295

    Article  CAS  Google Scholar 

  • Krishna TPA, Ceasar SA, Maharajan T, Ramakrishnan M, Duraipandiyan V, Al-Dhabi NA, Ignacimuthu S (2017) Improving the zinc-use efficiency in plants: a review. Sabrao J Breed Genet 49:211–230

    Google Scholar 

  • Krishna TPA, Maharajan T, Roch GV, Ignacimuthu S, Ceasar SA (2020) Structure, function, regulation and phylogenetic relationship of ZIP family transporters of plants. Front Plant Sci 11:662

    Article  Google Scholar 

  • Krishna TPA, Maharajan T, Ceasar SA (2022a) The role of membrane transporters in the biofortification of zinc and iron in plants. Biol Trace Elem Res. https://doi.org/10.1007/s12011-022-03159-w

    Article  Google Scholar 

  • Krishna TPA, Maharajan T, Ceasar SA (2022b) Application of CRISPR/Cas9 genome editing system to reduce the pre-and post-harvest yield losses in cereals. Open Biotech J 16:1–9

    Article  Google Scholar 

  • Lee S, Kim SA, Lee J, Guerinot ML, An G (2010) Zinc deficiency-inducible OsZIP8 encodes a plasma membrane-localized zinc transporter in rice. Mol Cells 29:551–558

    Article  CAS  Google Scholar 

  • Li Y, Zhang Y, Shi D, Liu X, Qin J, Ge Q, Xu L, Pan X, Li W, Zhu Y, Xu J (2013a) Spatial-temporal analysis of zinc homeostasis reveals the response mechanisms to acute zinc deficiency in Sorghum bicolor. New Phytol 200:1102–1115

    Article  CAS  Google Scholar 

  • Li S, Zhou X, Huang Y, Zhu L, Zhang S, Zhao Y, Guo J, Chen J, Chen R (2013b) Identification and characterization of the zinc-regulated transporters, iron-regulated transporter-like protein (ZIP) gene family in maize. BMC Plant Biol 13:114

    Article  Google Scholar 

  • Liu XB, Yang Q, Chu TD, Wang SH, Li SR, Wu XF (1993) Effect of zinc application on corn. Acta Pedofil Sin 30:153–162

    Google Scholar 

  • Macnair MR, Smirnoff N (1999) Use of zincon to study uptake and accumulation of zinc by zinc tolerant and hyperaccumulating plants. Commun Soil Sci Plant Anal 30:1127–1136

    Article  CAS  Google Scholar 

  • Maharajan T, Ceasar SA, Krishna TPA, Ramakrishnan M, Duraipandiyan V, Naif Abdulla AD, Ignacimuthu S (2018) Utilization of molecular markers for improving the phosphorus efficiency in crop plants. Plant Breed 137:10–26

    Article  CAS  Google Scholar 

  • Maharajan T, Ceasar SA, Krishna TPA, Ignacimuthu S (2019) Phosphate supply influenced the growth, yield and expression of PHT1 family phosphate transporters in seven millets. Planta 250:1433–1448

    Article  CAS  Google Scholar 

  • Maharajan T, Krishna TP, Kiriyanthan RM, Ignacimuthu S, Ceasar SA (2021a) Improving abiotic stress tolerance in sorghum: focus on the nutrient transporters and marker-assisted breeding. Planta 254:90

    Article  CAS  Google Scholar 

  • Maharajan T, Ceasar SA, Krishna TPA, Ignacimuthu S (2021b) Finger millet [Eleusine coracana (L.) Gaertn]: an orphan crop with a potential to alleviate the calcium deficiency in the semi-arid tropics of Asia and Africa. Front Sustain Food Syst 5:684447

    Article  Google Scholar 

  • Maharajan T, Ceasar SA, Krishna TPA (2022a) Finger Millet (Eleusine coracana (L.) Gaertn): nutritional importance and nutrient transporters. Crit Rev Plant Sci 41:1–31

    Article  CAS  Google Scholar 

  • Maharajan T, Chellasamy G, Krishna TPA, Ceasar SA, Yun K (2022b) The role of metal transporters in phytoremediation: a closer look at Arabidopsis. Chem 310:136881

    Google Scholar 

  • Maharajan T, Krishna TPK, Rakkammal K, Ceasar SA, Ramesh M (2022c) Application of CRISPR/Cas system in cereal improvement for biotic and abiotic stress tolerance. Planta 256:106

    Article  CAS  Google Scholar 

  • Marichali A, Dallali S, Ouerghemmi S, Sebei H, Hosni K (2014) Germination, morpho-physiological and biochemical responses of coriander (Coriandrum sativum L.) to zinc excess. Ind Crops Prod 55:248–257

    Article  CAS  Google Scholar 

  • Mondal TK, Ganie SA, Rana MK, Sharma TR (2014) Genome-wide analysis of zinc transporter genes of maize (Zea mays). Plant Mol Biol Report 32:605–616

    Article  CAS  Google Scholar 

  • Mundia CW, Secchi S, Akamani K, Wang G (2019) A regional comparison of factors affecting global sorghum production: the case of North America, Asia and Africa’s Sahel. Sustainability 11:2135

    Article  Google Scholar 

  • Nozoye T, Nagasaka S, Kobayashi T, Sato Y, Uozumi N, Nakanishi H, Nishizawa NK (2015) The phytosiderophore efflux transporter TOM2 is involved in metal transport in rice. J Biol Chem 290:27688–27699

    Article  CAS  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Article  CAS  Google Scholar 

  • Pedas P, Schjoerring JK, Husted S (2009) Identification and characterization of zinc-starvation-induced ZIP transporters from barley roots. Plant Physiol Biochem 47:377–383

    Article  CAS  Google Scholar 

  • Ramesh SA, Shin R, Eide DJ, Schachtman DP (2003) Differential metal selectivity and gene expression of two zinc transporters from rice. Plant Physiol 133:126–134

    Article  CAS  Google Scholar 

  • Rathore JS, Mohit U (2013) Investigation of zinc concentration in some medicinal plant leaves. Res J Pharm Sci 2:15–17

    Google Scholar 

  • Reddy PS, Srinivas Reddy D, Sivasakthi K, Bhatnagar-Mathur P, Vadez V, Sharma KK (2016) Evaluation of sorghum [Sorghum bicolor (L.)] reference genes in various tissues and under abiotic stress conditions for quantitative real-time PCR data normalization. Front Plant Sci 7:529

    Google Scholar 

  • Rehman A, Farooq M, Ozturk L, Asif M, Siddique KH (2018) Zinc nutrition in wheat-based crop** systems. Plant Soil 422:283–315

    Article  CAS  Google Scholar 

  • Roch GV, Maharajan T, Krishna TP, Ignacimuthu S, Ceasar SA (2020) Expression of PHT1 family transporter genes contributes for low phosphate stress tolerance in foxtail millet (Setaria italica) genotypes. Planta 252:98

    Article  CAS  Google Scholar 

  • Sadeghzadeh B (2013) A review of zinc nutrition and plant breeding. J Soil Sci Plant Nutr 13:905–927

    Google Scholar 

  • Seetharam K, Ganesamurthy K (2013) Characterization of sorghum genotypes for yield and other agronomic traits through genetic variability and diversity analysis. Elect J Plant Breed 4:1073–1079

    Google Scholar 

  • Singh D, Prasanna R (2020) Potential of microbes in the biofortification of Zn and Fe in dietary food grains. A review. Agron Sustain Dev 40:1–21

    Article  CAS  Google Scholar 

  • Suzuki M, Takahashi M, Tsukamoto T, Watanabe S, Matsuhashi S, Yazaki J, Kishimoto N, Kikuchi S, Nakanishi H, Mori S, Nishizawa NK (2006) Biosynthesis and secretion of mugineic acid family phytosiderophores in zinc-deficient barley. Plant J 48:85–97

    Article  CAS  Google Scholar 

  • Tiong J, McDonald G, Genc Y, Shirley N, Langridge P, Huang CY (2015) Increased expression of six ZIP family genes by zinc (Zn) deficiency is associated with enhanced uptake and root-to-shoot translocation of Zn in barley (Hordeum vulgare). New Phytol 207:1097–1109

    Article  CAS  Google Scholar 

  • Vadlamudi K, Upadhyay H, Singh A, Reddy M (2020) Influence of zinc application in plant growth: an Overview. Eur J Mol Clin Med 7:2321–2327

    Google Scholar 

  • Von Wiren N, Marschner H, Romheld V (1996) Roots of iron-efficient maize also absorb phytosiderophore-chelated zinc. Plant Physiol 111:1119–1125

    Article  Google Scholar 

  • Wang H, ** JY (2005) Photosynthetic rate, chlorophyll fluorescence parameters, and lipid peroxidation of maize leaves as affected by zinc deficiency. Photosynthetica 43:591–596

    Article  CAS  Google Scholar 

  • Wang C, Zhang SH, Wang PF, Hou J, Zhang WJ, Li W, Lin ZP (2009) The effect of excess Zn on mineral nutrition and antioxidative response in rapeseed seedlings. Chemosphere 75:1468–1476

    Article  CAS  Google Scholar 

  • Wang J, Yang Y, Liao L, Xu J, Liang X, Liu W (2019) Genome-wide identification and functional characterization of the phosphate transporter gene family in Sorghum. Biomolecules 9:670

    Article  Google Scholar 

  • Wasaya A, Shahzad Shabir M, Hussain M, Ansar M, Aziz A, Hassan W, Ahmad I (2017) Foliar application of zinc and boron improved the productivity and net returns of maize grown under rainfed conditions of Pothwar plateau. J Soil Sci Plant Nutr 17:33–45

    CAS  Google Scholar 

  • Yuvaraj M, Subramanian KS (2020) Significance of zinc in plant nutrition. Biot Res Today 2:823–825

    Google Scholar 

  • Zhang T, Liu J, Fellner M, Zhang C, Sui D, Hu J (2017) Crystal structures of a ZIP zinc transporter reveal a binuclear metal center in the transport pathway. Sci Adv 3:e1700344

    Article  Google Scholar 

  • Zulfiqar U, Hussain S, Ishfaq M, Matloob A, Ali N, Ahmad M, Alyemeni MN, Ahmad P (2020) Zinc-induced effects on productivity, zinc use efficiency, and grain biofortification of bread wheat under different tillage permutations. Agronomy 10:1566

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Tamil Nadu Agricultural University, Coimbatore, India, for providing sorghum seed.

Funding

This work was funded by Rajagiri College of Social Sciences, Kochi, Kerala, India, Under Seed Money for Faculty Minor Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanislaus Antony Ceasar.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Communicated by Dorothea Bartels.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maharajan, T., Krishna, T.P.A., Ceasar, S.A. et al. Zinc supply influenced the growth, yield, zinc content, and expression of ZIP family transporters in sorghum. Planta 257, 44 (2023). https://doi.org/10.1007/s00425-023-04076-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-023-04076-5

Keywords

Navigation