Log in

Overexpression of a phospholipase Dα gene from Ammopiptanthus nanus enhances salt tolerance of phospholipase Dα1-deficient Arabidopsis mutant

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

A phospholipase Dα gene ( AnPLDα ) was cloned from xerophytic desert plant Ammopiptanthus nanus and its overexpression enhanced salt tolerance of a PLDα1 deficient Arabidopsis mutant.

Phospholipase Dα (PLDα) hydrolyzes phosphatidylcholine to produce phosphatidic acid, and plays crucial role in plant tolerance to abiotic stress. In this study, a phospholipase Dα gene (AnPLDα) was cloned from xerophyte Ammopiptanthus nanus by the methods of homologous cloning and rapid amplification of cDNA ends, and evaluated for its function in stress tolerance. The full-length cDNA was 2832 bp long, containing an open reading frame of 2427 bp that encodes 808 amino acids. The putative protein was predicted to be localized to the cytoplasm and this was confirmed by transient expression of a fluorescent fusion protein. The endogenous expression of the AnPLDα gene was induced by high salt, dehydration, cold and abscisic acid. The heterologous expression of the AnPLDα gene improved salt tolerance of an Arabidopsis pldα1 knocked out mutant, and positively regulated the expression of the AtABI, AtNCED, AtRD29A, AtRD29B and AtADH genes. Therefore, the AnPLDα gene was concluded to be involved in response to abiotic stress. The AnPLDα gene is a hopeful candidate for transgenic application to improve stress tolerance of commercial crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

eGFP:

Enhanced green fluorescent protein

ORF:

Open reading frame

PA:

Phosphatidic acid

PLDα:

Phospholipase Dα

References

  • Bargmann BOR, Laxalt AM, Riet BT, Schooten BV, Merquiol E, Testerink C, Haring MA, Bartels D, Munnik T (2009) Multiple PLDs required for high salinity and water deficit tolerance in plants. Plant Cell Physiol 50:78–89

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Barrero JM, Rodriguez PL, Quesada V, Piqueras P, Ponce MR, Micol JL (2006) Both abscisic acid (ABA)-dependent and ABA-independent pathways govern the induction of NCED3, AAO3 and ABA1 in response to salt stress. Plant Cell Environ 29:2000–2008

    Article  CAS  PubMed  Google Scholar 

  • Chen GQ, Huang HW, Kang M, Ge XJ (2007) Development and characterization of microsatellite markers for an endangered shrub, Ammopiptanthus mongolicus (Leguminosae) and cross-species amplification in Ammopiptanthus nanus. Conserv Genet 8:1495–1497

    Article  CAS  Google Scholar 

  • Chen X, Wang YF, Lv B, Li J, Luo LQ, Lu SC, Zhang X, Ma H, Ming F (2014) The NAC family transcription factor OsNAP confers abiotic stress response through the ABA pathway. Plant Cell Physiol 55:604–619

    Article  CAS  PubMed  Google Scholar 

  • Cheng SH (1959) Ammopiptanthus Cheng f. a new genus of Leguminosae from central Asia. J Bot USSR 44:1381–1386

    Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Deng LQ, Yu HQ, Liu YP, Jiao PP, Zhou SF, Zhang SZ, Li WC, Fu FL (2014) Heterologous expression of antifreeze protein gene AnAFP from Ammopiptanthus nanus enhances cold tolerance in Escherichia coli and tobacco. Gene 539:132–140

    Article  CAS  PubMed  Google Scholar 

  • Devaiah SP, Pan X, Hong Y, Roth M, Welti R, Wang XM (2007) Enhancing seed quality and viability by suppressing phospholipase D in Arabidopsis. Plant J 50:950–957

    Article  CAS  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure from small quantities of fresh leaf tissues. Phytochem Bull 19:11–15

    Google Scholar 

  • Eliáš M, Potocký M, CvrčkováF Žárský V (2002) Molecular diversity of phospholipase D in angiosperms. BMC Genom 3:2

    Article  Google Scholar 

  • Fan L, Zheng SQ, Wang XM (1997) Antisense suppression of phospholipase Dα retards abscisic acid- and ethylene-promoted senescence of postharvest Arabidopsis leaves. Plant Cell 9:2183–2196

    PubMed Central  CAS  PubMed  Google Scholar 

  • Garnier J, Gibrat JF, Robson B (1996) GOR method for predicting protein secondary structure from amino acid sequence. Methods Enzymol 266:540–553

    Article  CAS  PubMed  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. The proteomics protocols handbook. Human Press, New York, pp 571–607

    Book  Google Scholar 

  • Ge XJ, Yu Y, Yuan YM, Huang HW, Yan C (2005) Genetic diversity and geographic differentiation in endangered Ammopiptanthus populations in desert regions of northwest China as revealed by ISSR analysis. Ann Bot 95:843–851

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hall BG (2013) Building phylogenetic trees from molecular data with MEGA. Mol Biol Evol 30:1229–1235

    Article  CAS  PubMed  Google Scholar 

  • Hong YY, Pan XQ, Welti R, Wang XM (2008a) Phospholipase Dα3 is involved in the hyperosmotic response in Arabidopsis. Plant Cell 20:803–816

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hong YY, Zheng SQ, Wang XM (2008b) Dual functions of phospholipase Dα1 in plant response to drought. Mol Plant 1:262–269

    Article  CAS  PubMed  Google Scholar 

  • Hsieh TH, Li CW, Su RC, Cheng CP, Sanjaya Tsai YC, Chan MT (2010) A tomato bZIP transcription factor, SlAREB, is involved in water deficit and salt stress response. Planta 231:1459–1473

    Article  CAS  PubMed  Google Scholar 

  • Huang YY, Shi Y, Lei Y, Li Y, Fan J, Xu YJ, Ma XF, Zhao JQ, **ao SY, Wang WM (2013) Functional identification of multiple nucleocytoplasmic trafficking signals in the broad spectrum resistance protein RPW8.2. Planta 239:455–468

    Article  PubMed  Google Scholar 

  • Hubbard KE, Nishimura N, Hitomi K, Getzoff ED, Schroeder JI (2010) Early abscisic acid signal transduction mechanisms: newly discovered components and newly emerging questions. Genes Dev 24:1695–1708

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jiang YJ, Liang G, Yu DQ (2012) Activated expression of WRKY57 confers drought tolerance in Arabidopsis. Mol Plant 5:1375–1388

    Article  CAS  PubMed  Google Scholar 

  • Kim JS, Mizoi J, Yoshida T, Fujita Y, Nakajima J, Ohori T, Todaka D, Nakashima K, Hirayama T, Shinozaki K, Yamaguchi-Shinozaki K (2011) An ABRE promoter sequence is involved in osmotic stress-responsive expression of the DREB2A gene, which encodes a transcription factor regulating drought-inducible genes in Arabidopsis. Plant Cell Physiol 52:2136–2146

    Article  CAS  PubMed  Google Scholar 

  • Kolesnikov YS, Nokhrina KP, Kretynin SV, Volotovski ID, Martinec J, Romanov GA, Kravets VS (2012) Molecular structure of phospholipase D and regulatory mechanisms of its activity in plant and animal cells. Biochemistry (Mosc) 77:1–14

    Article  CAS  Google Scholar 

  • Kooijman EE, Chupin V, de Kruijff B, Burger KN (2003) Modulation of membrane curvature by phosphatidic acid and lysophosphatidic acid. Traffic 4:162–174

    Article  CAS  PubMed  Google Scholar 

  • Lee SJ, Kang JY, Park HJ, Kim MD, Bae MS, Choi HI, Kim SY (2010) DREB2C interacts with ABF2, a bZIP protein regulating abscisic acid-responsive gene expression, and its overexpression affects abscisic acid sensitivity. Plant Physiol 153:716–727

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee JH, Welti R, Roth M, Schapaugh WT, Li JR, Trick HN (2012) Enhanced seed viability and lipid compositional changes during natural aging by suppressing phospholipase Dα in soybean seed. Plant Biotechnol J 10:164–173

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li G, Lin F, Xue HW (2007) Genome-wide analysis of the phospholipase D family in Oryza sativa and functional characterization of PLDβ1 in seed germination. Cell Res 17:881–894

    Article  CAS  PubMed  Google Scholar 

  • Li MY, Hong YY, Wang XM (2009) Phospholipase D- and phosphatidic acid- mediated signaling in plants. Biochim Biophys Acta 1791:927–935

    Article  CAS  PubMed  Google Scholar 

  • Li JB, Luan YS, Liu Z (2014) Overexpression of SpWRKY1 promotes resistance to Phytophthora nicotianae and tolerance to salt and drought stress in transgenic tobacco. Physiol Plant. doi:10.1111/ppl.12315

    Google Scholar 

  • Liu B, Yao L, Wang WG, Gao JH, Chen F, Wang SH, Xu Y, Tang L, Jia YJ (2010) Molecular cloning and characterization of phospholipase D from Jatropha curcas. Mol Biol Rep 37:939–946

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E (2009) Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324:1064–1068

    CAS  PubMed  Google Scholar 

  • Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, Geer RC, He J, Gwadz M, Hurwitz DI, Lanczycki CJ, Lu F, Marchler GH, Song JS, Thanki N, Wang Z, Yamashita RA, Zhang D, Zheng C, Bryant SH (2015) CDD: NCBI’s conserved domain database. Nucleic Acids Res 43:222–226

    Article  Google Scholar 

  • Min JH, Chung JS, Lee KH, Kim CS (2015) The CONSTANS-like 4 transcription factor, AtCOL4, positively regulates abiotic stress tolerance through an abscisic acid-dependent manner in Arabidopsis. J Integr Plant Biol 57:313–324

    Article  CAS  PubMed  Google Scholar 

  • Peng YL, Zhang JP, Cao GY, **e YH, Liu XH, Lu MH, Wang GY (2010) Overexpression of a PLDα1 gene from Setaria italica enhances the sensitivity of Arabidopsis to abscisic acid and improves its drought tolerance. Plant Cell Rep 29:793–802

    Article  CAS  PubMed  Google Scholar 

  • Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786

    Article  CAS  PubMed  Google Scholar 

  • Qiu HL, Zhang LH, Liu C, He L, Wang AY, Liu HL, Zhu JB (2014) Cloning and characterization of a novel dehydrin gene, SiDhn2, from Saussurea involucrata Kar. et Kir. Plant Mol Biol 84:707–718

    Article  CAS  PubMed  Google Scholar 

  • Ruelland E, Kravets V, Derevyanchuk M, Martinec J, Zachowski A, Pokotylo I (2015) Role of phospholipid signalling in plant environmental responses. Environ Exp Bot 114:129–143

    Article  CAS  Google Scholar 

  • Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K (2000) Overexpression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J 23:319–327

    Article  CAS  PubMed  Google Scholar 

  • Saijo Y, Kinoshita N, Ishiyama K, Hata S, Kyozuka J, Hayakawa T, Nakamura T, Shimamoto K, Yamaya T, Izui K (2001) A Ca2+-dependent protein kinase that endows rice plants with cold- and salt-stress tolerance functions in vascular bundles. Plant Cell Physiol 42:1228–1233

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot, ID 217037

    Google Scholar 

  • Shen P, Wang R, **g W, Zhang WH (2011) Rice phospholipase Dα is involved in salt tolerance by the mediation of H+-ATPase activity and transcription. J Integr Plant Biol 53:289–299

    Article  CAS  PubMed  Google Scholar 

  • Soon FF, Ng LM, Zhou XE, West GM, Kovach A, Tan MH, Suino-Powell KM, He Y, Xu Y, Chalmers M, Brunzelle JS, Zhang H, Yang H, Jiang H, Li J, Yong EL, Cutler S, Zhu JK, Griffin PR, Melcher K, Xu HE (2012) Molecular mimicry regulates ABA signaling by SnRK2 kinases and PP2C phosphatases. Science 335:85–88

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Szczegielniak J, Klimecka M, Liwosz A, Ciesielski A, Kaczanowski S, Dobrowolska G, Harmon AC, Muszynska G (2005) A wound responsive and phospholipid-regulated maize calcium-dependent protein kinase. Plant Physiol 139:1970–1983

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tuteja N (2007) Mechanisms of high salinity tolerance in plants. Methods Enzymol 428:419–438

    Article  CAS  PubMed  Google Scholar 

  • Wang XM (2000) Multiple forms of phospholipase D in plants: the gene family, catalytic and regulatory properties, and cellular functions. Prog Lipid Res 39:109–149

    Article  CAS  PubMed  Google Scholar 

  • Wang XM (2001) Plant phospholipases. Annu Rev Plant Biol 52:211–231

    Article  CAS  Google Scholar 

  • Wang ZJ (2005) Survey and protection for rare plant resource Ammopiptanthus nanus. Chin Wild Plant Resour 24:41–42

    Google Scholar 

  • Wang XM, Devaiah SP, Zhang WH, Welti R (2006) Signaling functions of phosphatidic acid. Prog Lipid Res 45:250–278

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Chen JJ, Li JN, Zhang YH, Shao ZY, Kuai BK (2007) Extraordinary accumulations of antioxidants in Ammopiptanthus mongolicus (Leguminosae) and Tetraena mongolica (Zygophyllaceae) distributed in extremely stressful environments. Bot Stud 48:55–61

    CAS  Google Scholar 

  • Wang JB, Ding B, Guo YL, Li M, Chen SJ, Huang GZ, **e XD (2014) Overexpression of a wheat phospholipase D gene, TaPLDα, enhances tolerance to drought and osmotic stress in Arabidopsis thaliana. Planta 240:103–115

    Article  CAS  PubMed  Google Scholar 

  • Xu ZY, Kim SY, de Hyeon Y, Kim DH, Dong T, Park Y, ** JB, Joo SH, Kim SK, Hong JC, Hwang D, Hwang I (2013) The Arabidopsis NAC transcription factor ANAC096 cooperates with bZIP-type transcription factors in dehydration and osmotic stress responses. Plant Cell 25:4708–4724

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang JD, Worley E, Udvardi M (2014) A NAP-AAO3 regulatory module promotes chlorophyll degradation via ABA biosynthesis in Arabidopsis leaves. Plant Cell 26:4862–4874

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang N, Ding FX, Wu GF, Wang CL, Ding L, An LZ (2015) Phospholipase Dα from Chorispora bungeana: cloning and partial functional characterization. Plant Growth Regul 75:511–520

    Article  CAS  Google Scholar 

  • Ying S, Zhang DF, Fu J, Shi YS, Song YC, Wang TY, Li Y (2012) Cloning and characterization of a maize bZIP transcription factor, ZmbZIP72, confers drought and salt tolerance in transgenic Arabidopsis. Planta 235:253–266

    Article  CAS  PubMed  Google Scholar 

  • Yoshida T, Fujita Y, Maruyama K, Mogami J, Todaka D, Shinozaki K, Yamaguchi-Shinozaki K (2015) Four Arabidopsis/AREB/ABF transcription factors function predominantly in gene expression downstream of SnRK2 kinases in abscisic acid signalling in response to osmotic stress. Plant, Cell Environ 38:35–49

    Article  CAS  Google Scholar 

  • You XR, Zhang YY, Li L, Li ZC, Li MJ, Li CB, Zhu JH, Peng HX, Sun J (2014) Cloning and molecular characterization of phospholipase D (PLD)delta gene from longan (Dimocarpus longan Lour.). Mol Biol Rep 41:4351–4360

    Article  CAS  PubMed  Google Scholar 

  • Yu LJ, Nie JN, Cao CY, ** YK, Yan M, Wang FZ, Liu J, **ao Y, Liang YH, Zhang WH (2010) Phosphatidic acid mediates salt stress response by regulation of MPK6 in Arabidopsis thaliana. New Phytol 188:762–773

    Article  CAS  PubMed  Google Scholar 

  • Yu HQ, Wang YG, Yong TM, She YH, Fu FL, Li WC (2014) Heterologous expression of betaine aldehyde dehydrogenase gene from Ammopiptanthus nanus confers high salt and heat tolerance to Escherichia coli. Gene 549:77–84

    Article  CAS  PubMed  Google Scholar 

  • Yu HQ, Zhang YY, Yong TM, Liu YP, Zhou SF, Fu FL, Li WC (2015a) Cloning and functional validation of molybdenum cofactor sulfurase gene from Ammopiptanthus nanus. Plant Cell Rep 34:1165–1176

    Article  CAS  PubMed  Google Scholar 

  • Yu XM, Li AH, Li WQ (2015b) How membranes organize during seed germination: three patterns of dynamic lipid remodelling define chilling resistance and affect plastid biogenesis. Plant Cell Environ 38:1391–1403

    Article  CAS  PubMed  Google Scholar 

  • Zhang WH, Qin CB, Zhao J, Wang XM (2004) Phospholipase Dα1-derived phosphatidic acid interacts with ABI1 phosphatase 2C and regulates abscisic acid signaling. Proc Natl Acad Sci USA 101:9508–9513

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang Q, Lin F, Mao TL, Nie JN, Yan M, Yuan M, Zhang WH (2012) Phosphatidic acid regulates microtubule organization by interacting with map65-1 in response to salt stress in Arabidopsis. Plant Cell 24:4555–4576

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao J (2015) Phospholipase D and phosphatidic acid in plant defence response: from protein-protein and lipid-protein interactions to hormone signaling. J Exp Bot 66:1721–1736

    Article  PubMed  Google Scholar 

  • Zhao JZ, Zhou D, Zhang Q, Zhang WH (2012) Genomic analysis of phospholipase D family and characterization of GmPLDαs in soybean (Glycine max). J Plant Res 125:569–578

    Article  CAS  PubMed  Google Scholar 

  • Zheng L, Krishnamoorthi R, Zolkiewski M, Wang XM (2000) Distinct Ca2+ binding properties of novel C2 domains of plant phospholipase D. J Biol Chem 275:19700–19706

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Science and Technology Special Project (2014ZX08003-004) and the National Natural Science Foundation of China (31071433). The authors thank the technical support from the Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Ling Fu or Wan Chen Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

H. Q. Yu and T. M. Yong contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 767 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, H.Q., Yong, T.M., Li, H.J. et al. Overexpression of a phospholipase Dα gene from Ammopiptanthus nanus enhances salt tolerance of phospholipase Dα1-deficient Arabidopsis mutant. Planta 242, 1495–1509 (2015). https://doi.org/10.1007/s00425-015-2390-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-015-2390-5

Keywords

Navigation