Log in

Inhibition of caspase-8 cascade restrains the osteoclastogenic fate of bone marrow cells

  • Signaling and Cell Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Osteoclasts are multinucleated cells of hematopoietic origin, with a pivotal role in bone development and remodeling. Failure in osteoclast differentiation and activation leads to various bone disorders; thus, attention has focused on a search of molecules involved in osteoclast regulatory pathways. Caspase-8 appears to be an interesting candidate for further exploration, due to its potential function in bone development and homeostasis. Mouse bone marrow cells were differentiated into osteoclasts by RANKL stimulation. Increased activation of caspase-8 and its downstream executioner caspases (caspase-3 and caspase-6) was found during osteoclastogenesis. Subsequent inhibition of caspase-8, caspase-3, or caspase-6, respectively, during osteoclast differentiation showed distinct changes in the formation of TRAP-positive multinucleated cells and reduced expression of osteoclast markers including Acp5, Ctsk, Dcstamp, and Mmp9. Analysis of bone matrix resorption confirmed significantly reduced osteoclast function after caspase inhibition. The results clearly showed the role of caspases in the proper development of osteoclasts and contributed new knowledge about non-apoptotic function of caspases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

No datasets were generated or analyzed during the current study.

References

  1. Alfaqeeh S, Oralova V, Foxworthy M, Matalova E, Grigoriadis AE, Tucker AS (2015) Root and eruption defects in c-Fos mice are driven by loss of osteoclasts. J Dent Res 94:1724–1731. https://doi.org/10.1177/0022034515608828

    Article  CAS  PubMed  Google Scholar 

  2. Ballanti P, Minisola S, Pacitti MT, Scarnecchia L, Rosso R, Mazzuoli GF, Bonucci E (1997) Tartrate-resistant acid phosphate activity as osteoclastic marker: sensitivity of cytochemical assessment and serum assay in comparison with standardized osteoclast histomorphometry. Osteoporos Int 7:39–43. https://doi.org/10.1007/BF01623458

    Article  CAS  PubMed  Google Scholar 

  3. Benford HL, McGowan NW, Helfrich MH, Nuttall ME, Rogers MJ (2001) Visualization of bisphosphonate-induced caspase-3 activity in apoptotic osteoclasts in vitro. Bone 28:465–473. https://doi.org/10.1016/s8756-3282(01)00412-4

    Article  CAS  PubMed  Google Scholar 

  4. Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature 423:337–342. https://doi.org/10.1038/nature01658

    Article  CAS  PubMed  Google Scholar 

  5. Caserta TM, Smith AN, Gultice AD, Reedy MA, Brown TL (2003) Q-VD-OPh, a broad spectrum caspase inhibitor with potent antiapoptotic properties. Apoptosis 8:345–352. https://doi.org/10.1023/a:1024116916932

    Article  CAS  PubMed  Google Scholar 

  6. Choi E-B, Agidigbi TS, Kang I-S, Kim C (2022) ERK inhibition increases RANKL-induced osteoclast differentiation in RAW 264.7 cells by stimulating AMPK activation and RANK expression and inhibiting anti-osteoclastogenic factor expression. Int J Mol Sci 23:13512. https://doi.org/10.3390/ijms232113512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Christensen J, Shastri VP (2015) Matrix-metalloproteinase-9 is cleaved and activated by cathepsin K. BMC Res Notes 8:1–8. https://doi.org/10.1186/s13104-015-1284-8

    Article  CAS  Google Scholar 

  8. Chwieralski CE, Welte T, Bühling F (2006) Cathepsin-regulated apoptosis. Apoptosis 11:143–149. https://doi.org/10.1007/s10495-006-3486-y

    Article  CAS  PubMed  Google Scholar 

  9. Cui W, Ke JZ, Zhang Q, Ke HZ, Chalouni C, Vignery A (2006) The intracellular domain of CD44 promotes the fusion of macrophages. Blood 107:796–805. https://doi.org/10.1182/blood-2005-05-1902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dai R, Wu Z, Chu HY, Lu J, Lyu A, Liu J, Zhang G (2020) Cathepsin K: the action in and beyond bone. Front Cell Dev Biol 8:1–13. https://doi.org/10.3389/fcell.2020.00433

    Article  Google Scholar 

  11. Drake MT, Clarke BL, Oursler MJ, Khosla S (2017) Cathepsin K inhibitors for osteoporosis: biology, potential clinical utility, and lessons learned. Endocr Rev 38:325–350. https://doi.org/10.1210/er.2015-1114

    Article  PubMed  PubMed Central  Google Scholar 

  12. Falzoni S, Chiozzi P, Ferrari D, Buell G, Di Virgilio F (2000) P2X(7) receptor and polykarion formation. Mol Biol Cell 11:3169–3176. https://doi.org/10.1091/mbc.11.9.3169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Finlay D, Vuori K (2007) Novel noncatalytic role for caspase-8 in promoting SRC-mediated adhesion and Erk signaling in neuroblastoma cells. Cancer Res 67:11704–11711. https://doi.org/10.1158/0008-5472.CAN-07-1906

    Article  CAS  PubMed  Google Scholar 

  14. Gelb BD, Shi GP, Chapman HA, Desnick RJ (1996) Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science 273:1236–1238. https://doi.org/10.1126/science.273.5279.1236

    Article  CAS  PubMed  Google Scholar 

  15. Ghayor C, Correro RM, Lange K, Karfeld-Sulzer LS, Grätz KW, Weber FE (2011) Inhibition of osteoclast differentiation and bone resorption by N-methylpyrrolidone. J Biol Chem 286:24458–24466. https://doi.org/10.1074/jbc.M111.223297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Grigoriadis AE, Wang ZQ, Cecchini MG, Hofstetter W, Felix R, Fleisch HA, Wagner EF (1994) c-Fos: a key regulator of osteoclast-macrophage lineage determination and bone remodeling. Science 266:443–448. https://doi.org/10.1126/science.7939685

    Article  CAS  PubMed  Google Scholar 

  17. Han X, Sterling H, Chen Y, Saginario C, Brown EJ, Frazier WA, Lindberg FP, Vignery A (2000) CD47, a ligand for the macrophage fusion receptor, participates in macrophage multinucleation. J Biol Chem 275:37984–37992. https://doi.org/10.1074/jbc.M002334200

    Article  CAS  PubMed  Google Scholar 

  18. He Y, Staser K, Rhodes SD, Liu Y, Wu X, Park S-J, Yuan J, Yang X, Li X, Jiang L, Chen S, Yang F-C (2011) Erk1 positively regulates osteoclast differentiation and bone resorptive activity. PLoS One 6:e24780. https://doi.org/10.1371/journal.pone.0024780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kang T-B, Ben-Moshe T, Varfolomeev EE, Pewzner-Jung Y, Yogev N, Jurewicz A, Waisman A, Brenner O, Haffner R, Gustafsson E, Ramakrishnan P, Lapidot T, Wallach D (2004) Caspase-8 serves both apoptotic and nonapoptotic roles. J Immunol 173:2976–2984. https://doi.org/10.4049/jimmunol.173.5.2976

    Article  CAS  PubMed  Google Scholar 

  20. Karsenty G, Wagner EF (2002) Reaching a genetic and molecular understanding of skeletal development. Dev Cell 2:389–406. https://doi.org/10.1016/S1534-5807(02)00157-0

    Article  CAS  PubMed  Google Scholar 

  21. Kim JH, Kim N (2014) Regulation of NFATc1 in osteoclast differentiation. J Bone Metab 21:233. https://doi.org/10.11005/jbm.2014.21.4.233

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lampiasi N, Russo R, Kireev I, Strelkova O, Zhironkina O, Zito F (2021) Osteoclasts differentiation from murine RAW 264.7 cells stimulated by RANKL: Timing and behavior. Biology (Basel) 10:117. https://doi.org/10.3390/biology10020117

  23. Miura M, Chen X, Allen M, Bi Y, Gronthos S, Seo B, Lakhani S, Flavell R, Feng X, Robey P, Young M, Shi S (2004) A crucial role of caspase-3 in osteogenic differentiation of bone marrow stromal stem cells. J Clin Invest 114:1704–1713. https://doi.org/10.1172/JCI20427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mogi M, Togari A (2003) Activation of caspases is required for osteoblastic differentiation. J Biol Chem 278:47477–47482. https://doi.org/10.1074/jbc.M307055200

    Article  CAS  PubMed  Google Scholar 

  25. Mun SH, Park PSU, Park-Min K-H (2020) The M-CSF receptor in osteoclasts and beyond. Exp Mol Med 52:1239–1254. https://doi.org/10.1038/s12276-020-0484-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ono T, Nakashima T (2018) Recent advances in osteoclast biology. Histochem Cell Biol 149:325–341. https://doi.org/10.1007/s00418-018-1636-2

    Article  CAS  PubMed  Google Scholar 

  27. Park JH, Lee NK, Lee SY (2017) Current understanding of RANK signaling in osteoclast differentiation and maturation. Mol Cells 40:706–713. https://doi.org/10.14348/molcells.2017.0225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ramesova A, Vesela B, Svandova E, Lesot H, Matalova E (2022) Caspase-9 inhibition decreases expression of Mmp9 during chondrogenesis. Histochem Cell Biol:1–11. https://doi.org/10.1007/s00418-021-02067-9

  29. Reponen P, Sahlberg C, Munaut C, Thesleff I, Tryggvason K (1994) High expression of 92-kD type IV collagenase (gelatinase B) in the osteoclast lineage during mouse development. J Cell Biol 124:1091–1102. https://doi.org/10.1083/jcb.124.6.1091

    Article  CAS  PubMed  Google Scholar 

  30. Russo R, Mallia S, Zito F, Lampiasi N (2019) Gene expression profiling of NFATc1-knockdown in RAW 264.7 cells: an alternative pathway for macrophage differentiation. Cells 8:131. https://doi.org/10.3390/cells8020131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Solier S, Fontenay M, Vainchenker W, Droin N, Solary E (2017) Non-apoptotic functions of caspases in myeloid cell differentiation. Cell Death Differ 24:1337–1347. https://doi.org/10.1038/cdd.2017.19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Soysa NS, Alles N (2019) Positive and negative regulators of osteoclast apoptosis. Bone Reports 11. https://doi.org/10.1016/j.bonr.2019.100225

  33. Svandova E, Vesela B, Tucker A, Matalova E (2018) Activation of pro-apoptotic caspases in non-apoptotic cells during odontogenesis and related osteogenesis. Front Physiol 9:312644. https://doi.org/10.3389/FPHYS.2018.00174

    Article  Google Scholar 

  34. Szymczyk K, Freeman T, Adams C, Srinivas V, Steinbeck M (2006) Active caspase-3 is required for osteoclast differentiation. J Cell Physiol 209:836–844. https://doi.org/10.1002/JCP.20770

    Article  CAS  PubMed  Google Scholar 

  35. Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H, Saiura A, Isobe M, Yokochi T, Inoue JI, Wagner EF, Mak TW, Kodama T, Taniguchi T (2002) Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell 3:889–901. https://doi.org/10.1016/S1534-5807(02)00369-6

    Article  CAS  PubMed  Google Scholar 

  36. Varfolomeev EE, Schuchmann M, Luria V, Chiannilkulchai N, Beckmann JS, Mett IL, Rebrikov D, Brodianski VM, Kemper OC, Kollet O, Lapidot T, Soffer D, Sobe T, Avraham KB, Goncharov T, Holtmann H, Lonai P, Wallach D (1998) Targeted disruption of the mouse Caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo1, and DR3 and is lethal prenatally. Immunity 9:267–276. https://doi.org/10.1016/s1074-7613(00)80609-3

    Article  CAS  PubMed  Google Scholar 

  37. Vesela B, Killinger M, Rihova K, Benes P, Svandová E, Kratochvilová A, Trcka F, Kleparnik K, Matalova E (2022) Caspase-8 deficient osteoblastic cells display alterations in non-apoptotic pathways. Front Cell Dev Biol 10:1–11. https://doi.org/10.3389/fcell.2022.794407

    Article  Google Scholar 

  38. Walsh JG, Cullen SP, Sheridan C, Lüthi AU, Gerner C, Martin SJ (2008) Executioner caspase-3 and caspase-7 are functionally distinct proteases. Proc Natl Acad Sci U S A 105:12815–12819. https://doi.org/10.1073/pnas.0707715105

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wu X, McKenna MA, Feng XU, Nagy TR, McDonald JM (2003) Osteoclast apoptosis: the role of Fas in vivo and in vitro. Endocrinology 144:5545–5555. https://doi.org/10.1210/en.2003-0296

    Article  CAS  PubMed  Google Scholar 

  40. Yagi M, Miyamoto T, Sawatani Y, Iwamoto K, Hosogane N, Fujita N, Morita K, Ninomiya K, Suzuki T, Miyamoto K, Oike Y, Takeya M, Toyama Y, Suda T (2005) DC-STAMP is essential for cell-cell fusion in osteoclasts and foreign body giant cells. J Exp Med 202:345–351. https://doi.org/10.1084/jem.20050645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yi TG, Kim HJ, Cho JY, Woo KM, Ryoo HM, Kim GS, Baek JH (2006) Tetraspanin CD9 regulates osteoclastogenesis via regulation of p44/42 MAPK activity. Biochem Biophys Res Commun 347:178–184. https://doi.org/10.1016/j.bbrc.2006.06.061

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The research was supported the Czech Science Foundation, project GACR 21-21409S.

Author information

Authors and Affiliations

Authors

Contributions

E.M. designed the study. B.V. planned the experiments. B.V., A.S., A.R., A.K. and K.H. performed the experiments. A.K. and P.S. analyzed the data. A.S. and B.V. prepared figures. B.V. and E.M. wrote the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Barbora Veselá.

Ethics declarations

Ethical approval

The samples were obtained in agreement with the recent legislation in the Czech Republic, law 359/2012 Sb., in which there is no specific requirement for post-mortem sampling.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(TIF 25513 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veselá, B., Ševčíková, A., Holomková, K. et al. Inhibition of caspase-8 cascade restrains the osteoclastogenic fate of bone marrow cells. Pflugers Arch - Eur J Physiol (2024). https://doi.org/10.1007/s00424-024-02977-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00424-024-02977-2

Keywords

Navigation