Log in

Different effects of CsA and FK506 on aquaporin-2 abundance in rat primary cultured collecting duct cells

  • Transport Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Calcineurin (Cn) inhibitors (CnI) such as cyclosporine A (CsA) and FK506 are nephrotoxic immunosuppressant drugs, which decrease tubular function. Here, we examined the direct effect of CnI on aquaporin-2 (AQP2) expression in rat primary cultured inner medullary collecting duct cells. CsA (0.5–5 μM) but not FK 506 (0.01–1 μM) decreased expression of AQP2 protein and messenger RNA (mRNA) in a concentration and time dependent manner, without affecting mRNA stability. This effect was observed despite similar inhibition of Cn activity by both CnI, thereby suggesting that the CsA-dependent decrease in AQP2 expression was Cn independent. Another inhibitor of cyclophilin A, the primary intracellular target of CsA, had no effect on AQP2 expression. In order to investigate the mechanism of decreased AQP2 transcription, we studied activation status of two suggested transcriptional regulators of AQP2, cAMP-responsive element binding protein (CREB), and tonicity enhancer binding protein (TonEBP). Localization of TonEBP, as well as TonEBP-mediated gene transcription, was not affected by CsA. Phosphorylation of CREB at an activating phosphorylation site (S133) was decreased by CsA, but not by FK506. However, both CnI did not affect cellular cAMP levels. We show that CsA decreases transcription of AQP2, a process that is in part independent of Cn or cyclophilin A and suggests dependence on decreased activity of CREB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aker S, Heering P, Kinne-Saffran E, Deppe C, Grabensee B, Kinne RKH (2001) Different effects of cyclosporine A and FK506 on potassium transport systems in MDCK Cells. Nephron Exp Nephrol 9:332–340

    Article  CAS  Google Scholar 

  2. Atta MG, Dahl SC, Kwon HM, Handler JS (1999) Tyrosine kinase inhibitors and immunosuppressants perturb the myo-inositol but not the betaine cotransporter in isotonic and hypertonic MDCK cells. Kidney Int 55:956–962

    Article  PubMed  CAS  Google Scholar 

  3. Bansal AD, Hoffert JD, Pisitkun T, Hwang S, Chou CL, Boja ES, Wang G, Knepper MA (2010) Phosphoproteomic profiling reveals vasopressin-regulated phosphorylation sites in collecting duct. J Am Soc Nephrol 21:303–315

    Article  PubMed  CAS  Google Scholar 

  4. Boone M, Kortenoeven M, Robben JH, Deen PMT (2010) Effect of the cGMP pathway on AQP2 expression and translocation: potential implications for nephrogenic diabetes insipidus. Nephrol Dial Transplant 25:48–54

    Article  PubMed  CAS  Google Scholar 

  5. Burg MB, Ferraris JD, Dmitrieva NI (2007) Cellular response to hyperosmotic stresses. Physiol Rev 87:1441–1474

    Article  PubMed  CAS  Google Scholar 

  6. Busauschina A, Schnuelle P, van der Woude FJ (2004) Cyclosporine nephrotoxicity. Transplant Proc 36:229S–233S

    Article  PubMed  CAS  Google Scholar 

  7. Cai Q, Ferraris JD, Burg MB (2005) High NaCl increases TonEBP/OREBP mRNA and protein by stabilizing its mRNA. Am J Physiol Renal Physiol 289:F803–F807

    Article  PubMed  CAS  Google Scholar 

  8. Chen B, Zang CS, Zhang JZ, Wang WG, Wang JG, Zhou HL, Fu YW (2010) The changes of aquaporin 2 in the graft of acute rejection rat renal transplantation model. Transplant Proc 42:1884–1887

    Article  PubMed  CAS  Google Scholar 

  9. Edemir B, Reuter S, Borgulya R, Schroter R, Neugebauer U, Gabriels G, Schlatter E (2008) Acute rejection modulates gene expression in the collecting duct. J Am Soc Nephrol 19:538–546

    Article  PubMed  CAS  Google Scholar 

  10. Enz A, Shapiro G, Chappuis A, Dattler A (1994) Nonradioactive assay for protein phosphatase 2B (Calcineurin) activity using a partial sequence of the subunit of cAMP-dependent protein kinase as substrate. Anal Biochem 216:147–153

    Article  PubMed  CAS  Google Scholar 

  11. Feldman G, Kiely B, Martin N, Ryan G, McMorrow T, Ryan MP (2007) Role for TGF-+¦ in cyclosporine-induced modulation of renal epithelial barrier function. J Am Soc Nephrol 18:1662–1671

    Article  PubMed  CAS  Google Scholar 

  12. Fruman DA, Pai SY, Klee CB, Burakoff SJ, Bierer BE (1996) Measurement of calcineurin phosphatase activity in cell extracts. Methods 9:146–154

    Article  PubMed  CAS  Google Scholar 

  13. Gallazzini M, Yu MJ, Gunaratne R, Burg MB, Ferraris JD (2010) c-Abl mediates high NaCl-induced phosphorylation and activation of the transcription factor TonEBP/OREBP. FASEB J 24:4325–4335

    Article  PubMed  CAS  Google Scholar 

  14. Garcia-Perez A, Burg MB (1991) Renal medullary organic osmolytes. Physiol Rev 71:1081–1115

    PubMed  CAS  Google Scholar 

  15. Gooch JL, Guler RL, Barnes JL, Toro JJ (2006) Loss of calcineurin Aalpha results in altered trafficking of AQP2 and in nephrogenic diabetes insipidus. J Cell Sci 119:2468–2476

    Article  PubMed  CAS  Google Scholar 

  16. Handler JS, Kwon HM (2001) Transcriptional regulation by changes in tonicity. Kidney Int 60:408–411

    Article  PubMed  CAS  Google Scholar 

  17. Hasler U, Mordasini D, Bens M, Bianchi M, Cluzeaud F, Rousselot M, Vandewalle A, Feraille E, Martin PY (2002) Long term regulation of aquaporin-2 expression in vasopressin-responsive renal collecting duct principal cells. J Biol Chem 277:10379–10386

    Article  PubMed  CAS  Google Scholar 

  18. Hasler U, Jeon US, Kim JA, Mordasini D, Kwon HM, Feraille E, Martin PY (2006) Tonicity-responsive enhancer binding protein is an essential regulator of aquaporin-2 expression in renal collecting duct principal cells. J Am Soc Nephrol 17:1521–1531

    Article  PubMed  CAS  Google Scholar 

  19. Hasler U, Nielsen S, Feraille E, Martin PY (2006) Posttranscriptional control of aquaporin-2 abundance by vasopressin in renal collecting duct principal cells. Am J Physiol Renal Physiol 290:F177–F187

    Article  PubMed  CAS  Google Scholar 

  20. Hasler U, Vr L, Jeon US, Bouley R, Dimitrov M, Kim JA, Brown D, Kwon HM, Martin PY, Féraille E (2008) NF- + ¦B modulates aquaporin-2 transcription in renal collecting duct principal cells. J Biol Chem 283:28095–28105

    Article  PubMed  CAS  Google Scholar 

  21. Hasler U, Leroy V, Martin PY, Feraille E (2009) Aquaporin-2 abundance in the renal collecting duct: new insights from cultured cell models. Am J Physiol Renal Physiol 297:F10–F18

    Article  PubMed  CAS  Google Scholar 

  22. Hoffert JD, Chou CL, Fenton RA, Knepper MA (2005) Calmodulin is required for vasopressin-stimulated increase in cyclic AMP production in inner medullary collecting duct. J Biol Chem 280:13624–13630

    Article  PubMed  CAS  Google Scholar 

  23. Klokkers J, Langehanenberg P, Kemper B, Kosmeier S, von Bally G, Riethmuller C, Wunder F, Sindic A, Pavenstadt H, Schlatter E, Edemir B (2009) Atrial natriuretic peptide and nitric oxide signaling antagonizes vasopressin-mediated water permeability in inner medullary collecting duct cells. Am J Physiol Renal Physiol 297:F693–F703

    Article  PubMed  CAS  Google Scholar 

  24. Lee YI, Seo M, Kim Y, Kim SY, Kang UG, Kim YS, Juhnn YS (2005) Membrane depolarization induces the undulating phosphorylation/dephosphorylation of glycogen synthase kinase 3 + ¦, and this dephosphorylation involves protein phosphatases 2A and 2B in SH-SY5Y human neuroblastoma cells. J Biol Chem 280:22044–22052

    Article  PubMed  CAS  Google Scholar 

  25. Li SZ, McDill BW, Kovach PA, Ding L, Go WY, Ho SN, Chen F (2007) Calcineurin-NFATc signaling pathway regulates AQP2 expression in response to calcium signals and osmotic stress. Am J Physiol Cell Physiol 292:C1606–C1616

    Article  PubMed  CAS  Google Scholar 

  26. Lim SW, Li C, Sun BK, Han KH, Kim WY, Oh YW, Lee JU, Kador PF, Knepper MA, Sands JM, Kim J et al (2004) Long-term treatment with cyclosporine decreases aquaporins and urea transporters in the rat kidney. Am J Physiol Renal Physiol 287:F139–F151

    Article  PubMed  CAS  Google Scholar 

  27. Lim SW, Ahn KO, Sheen MR, Jeon US, Kim J, Yang CW, Kwon HM (2007) Downregulation of renal sodium transporters and tonicity-responsive enhancer binding protein by long-term treatment with cyclosporin A. J Am Soc Nephrol 18:421–429

    Article  PubMed  CAS  Google Scholar 

  28. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  29. Lopez-Rodriguez C, Aramburu J, Rakeman AS, Rao A (1999) NFAT5, a constitutively nuclear NFAT protein that does not cooperate with Fos and Jun. Proc Natl Acad Sci 96:7214–7219

    Article  PubMed  CAS  Google Scholar 

  30. Maric K, Oksche A, Rosenthal W (1998) Aquaporin-2 expression in primary cultured rat inner medullary collecting duct cells. Am J Physiol 275:F796–F801

    PubMed  CAS  Google Scholar 

  31. Mohebbi N, Mihailova M, Wagner CA (2009) The calcineurin inhibitor FK506 (tacrolimus) is associated with transient metabolic acidosis and altered expression of renal acid-base transport proteins. Am J Physiol Renal Physiol 297:F499–F509

    Article  PubMed  CAS  Google Scholar 

  32. Nedvetsky PI, Tabor V, Tamma G, Beulshausen S, Skroblin P, Kirschner A, Mutig K, Boltzen M, Petrucci O, Vossenkamper A, Wiesner B et al (2010) Reciprocal regulation of aquaporin-2 abundance and degradation by protein kinase A and p38-MAP kinase. J Am Soc Nephrol 21:645–656

    Article  Google Scholar 

  33. Nielsen S, Frokiaer J, Marples D, Kwon TH, Agre P, Knepper MA (2002) Aquaporins in the kidney: from molecules to medicine. Physiol Rev 82:205–244

    PubMed  CAS  Google Scholar 

  34. Nielsen J, Hoffert JD, Knepper MA, Agre P, Nielsen S, Fenton RA (2008) Proteomic analysis of lithium-induced nephrogenic diabetes insipidus: mechanisms for aquaporin 2 down-regulation and cellular proliferation. Proc Natl Acad Sci USA 105:3634–3639

    Article  PubMed  CAS  Google Scholar 

  35. Omori K, Naruishi K, Yamaguchi T, Li SA, Yamaguchi-Morimoto M, Matsuura K, Arai H, Takei K, Takashiba S (2007) cAMP-response element binding protein (CREB) regulates cyclosporine-A-mediated down-regulation of cathepsin B and L synthesis. Cell Tissue Res 330:75–82

    Article  PubMed  CAS  Google Scholar 

  36. Rao R, Patel S, Hao C, Woodgett J, Harris R (2010) GSK3{beta} mediates renal response to vasopressin by modulating adenylate cyclase activity. J Am Soc Nephrol 21:428–437

    Article  PubMed  CAS  Google Scholar 

  37. Riethmüller CP, Oberleithner H, Wilhelmi M, Franz J, Schlatter E, Klokkers J, Edemir B (2007) Translocation of aquaporin-containing vesicles to the plasma membrane is facilitated by actomyosin relaxation. Biophys J 94:671–678

    Article  PubMed  Google Scholar 

  38. Rinschen MM, Yu MJ, Wang G, Boja ES, Hoffert JD, Pisitkun T, Knepper MA (2010) Quantitative phosphoproteomic analysis reveals vasopressin V2-receptor dependent signaling pathways in renal collecting duct cells. Proc Natl Acad Sci USA 107:3882–3887

    Article  PubMed  CAS  Google Scholar 

  39. Sarro E, Tornavaca O, Plana M, Meseguer A, Itarte E (2007) Phosphoinositide 3-kinase inhibitors protect mouse kidney cells from cyclosporine-induced cell death. Kidney Int 73:77–85

    Article  PubMed  Google Scholar 

  40. Schenk LK, Rinschen MM, Klokkers J, Kurian SM, Neugebauer U, Salomon DR, Pavenstaedt H, Schlatter E, Edemir B (2010) Cyclosporin-A induced toxicity in rat renal collecting duct cells: interference with enhanced hypertonicity induced apoptosis. Cell Physiol Biochem 26:887–900

    Article  PubMed  CAS  Google Scholar 

  41. Sheikh-Hamad D, Nadkarni V, Choi YJ, Truong LD, Wideman C, Hodjati R, Gabbay KH (2001) Cyclosporine A inhibits the adaptive responses to hypertonicity: a potential mechanism of nephrotoxicity. J Am Soc Nephrol 12:2732–2741

    PubMed  CAS  Google Scholar 

  42. Storm R, Klussmann E, Geelhaar A, Rosenthal W, Maric K (2003) Osmolality and solute composition are strong regulators of AQP2 expression in renal principal cells. Am J Physiol Renal Physiol 284:F189–F198

    PubMed  CAS  Google Scholar 

  43. Terris J, Ecelbarger CA, Nielsen S, Knepper MA (1996) Long-term regulation of four renal aquaporins in rats. Am J Physiol Renal Physiol 271:F414–F422

    CAS  Google Scholar 

  44. Velic A, Gabriëls G, Hirsch JR, Schroter R, Edemir B, Paasche S, Schlatter E (2005) Acute rejection after rat renal transplantation leads to downregulation of Na+ and water channels in the collecting duct. Am J Transplant 5:1276–1285

    Article  PubMed  CAS  Google Scholar 

  45. Werlen G, Jacinto E, **a Y, Karin M (1998) Calcineurin preferentially synergizes with PKC-[thgr] to activate JNK and IL-2 promoter in T lymphocytes. EMBO J 17:3101–3111

    Article  PubMed  CAS  Google Scholar 

  46. Wiederrecht G, Lam E, Hung S, Martin M, Sigal N (1993) The mechanism of action of FK-506 and cyclosporin A. Ann N Y Acad Sci 696:9–19

    Article  PubMed  CAS  Google Scholar 

  47. Woo SK, Lee SD, Kwon HM (2002) TonEBP transcriptional activator in the cellular response to increased osmolality. Pflugers Arch 444:579–585

    Article  PubMed  CAS  Google Scholar 

  48. Wu MS, Yang CW, Bens M, Peng KC, Yu HM, Vandewalle A (2000) Cyclosporine stimulates Na+−K+−Cl cotransport activity in cultured mouse medullary thick ascending limb cells. Kidney Int 58:1652–1663

    Article  PubMed  CAS  Google Scholar 

  49. Yost C, Torres M, Miller JR, Huang E, Kimelman D, Moon RT (1996) The axis-inducing activity, stability, and subcellular distribution of beta-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3. Genes Dev 10:1443–1454

    Article  PubMed  CAS  Google Scholar 

  50. Yu MJ, Miller RL, Uawithya P, Rinschen MM, Khositseth S, Braucht DWW, Chou CL, Pisitkun T, Nelson RD, Knepper MA (2009) Systems-level analysis of cell-specific AQP2 gene expression in renal collecting duct. Proc Natl Acad Sci USA 106:2441–2446

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant of “Innovative Medical Research,” University of Münster Medical Faculty (ED210709) to B.E., the Else-Kröner Fresenius Stiftung to B.E. and E.S, and a grant “Förderprojekte für Studierende (SAFIR) of the University of Münster” to M.M.R. The technical help of Rita Schröter, Julia Humberg, Bernadette Gelschefarth, and Kathrin Beul is deeply acknowledged.

Disclosures

The authors have no financial conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bayram Edemir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rinschen, M.M., Klokkers, J., Pavenstädt, H. et al. Different effects of CsA and FK506 on aquaporin-2 abundance in rat primary cultured collecting duct cells. Pflugers Arch - Eur J Physiol 462, 611–622 (2011). https://doi.org/10.1007/s00424-011-0994-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-011-0994-6

Keywords

Navigation