Log in

A flexoelectric theory with rotation gradient and electric field gradient effects for isotropic dielectrics

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this study, a flexoelectric theory within the context of the couple stress theory is developed for isotropic dielectrics to capture the size-dependent flexoelectric behaviors. In this theory, the electric enthalpy density depends on the strain, the symmetric part and the dual vector of the antisymmetric part of the rotation gradient, the electric field and its gradient. The constitutive relations are obtained by means of it. The governing equations and boundary conditions are derived from the variational principle. Based on this theory, the electromechanical responses of a cantilever beam and an infinite length tube are solved. For the beam problem, numerical results show that the force-induced electric potential increases with the increasing flexoelectric coefficient and decreasing electrical scale parameters and exhibits obvious size dependency. A positive voltage makes the beam bend upward, while a negative voltage makes the beam bend downward, and the deflection increases with the applied voltage. Besides, the rotation gradient effect is significant when the ratio of beam thickness to material mechanical scale parameters is smaller. For the tube problem, numerical results show that the radial displacement is reduced, and the radial electric field becomes smoothed out owing to the flexoelectric effect. The gradient of the radial electric field increases with the decreasing electrical scale parameters. Moreover, this problem is not affected by the rotation gradient effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Fu, J.Y., Zhu, W., Li, N., Cross, L.E.: Experimental studies of the converse flexoelectric effect induced by inhomogeneous electric field in a barium strontium titanate composition. J. Appl. Phys. 100, 024112 (2006)

    Article  Google Scholar 

  2. Wang, B., Gu, Y., Zhang, S., Chen, L.Q.: Flexoelectricity in solids: progress, challenges, and perspectives. Prog. Mater. Sci. 106, 100570 (2019)

    Article  Google Scholar 

  3. Shu, L., Liang, R., Rao, Z., Fei, L., Ke, S., Wang, Y.: Flexoelectric materials and their related applications: a focused review. J. Adv. Ceram. 8(2), 153–173 (2019)

    Article  Google Scholar 

  4. Ebrahimi, F., Barati, M.R.: Nonlocal and surface effects on vibration behavior of axially loaded flexoelectric nanobeams subjected to in-plane magnetic field. Arab. J. Sci. Eng. 43, 1423–1433 (2018)

    Article  Google Scholar 

  5. Hu, T., Deng, Q., Liang, X., Shen, S.: Measuring the flexoelectric coefficient of bulk barium titanate from a shock wave experiment. J. Appl. Phys. 122, 055106 (2017)

    Article  Google Scholar 

  6. Huang, W., Kim, K., Zhang, S., Yuan, F.G., Jiang, X.: Scaling effect of flexoelectric (Ba, Sr)TiO3 microcantilevers. Phys. Status Solidi-Rapid Res. Lett. 5(9), 350–352 (2011)

    Article  Google Scholar 

  7. Wang, H., Jiang, X., Wang, Y., Stark, R.W., van Aken, P.A., Mannhart, J., Boschker, H.: Direct observation of huge flexoelectric polarization around crack tips. Nano Lett. 20, 88–94 (2020)

    Article  Google Scholar 

  8. Zhang, S., Liu, K., Wen, X., Wu, T., Xu, M., Shen, S.: Converse flexoelectricity with relative permittivity gradient. Appl. Phys. Lett. 114, 052903 (2019)

    Article  Google Scholar 

  9. Koirala, P., Mizzi, C.A., Marks, L.D.: Direct observation of large flexoelectric bending at the nanoscale in lanthanide scandates. Nano Lett. 18, 3850–3856 (2018)

    Article  Google Scholar 

  10. Hirakata, H., Fukuda, Y., Shimada, T.: Flexoelectric properties of multilayer two-dimensional material MoS2. J. Phys. D: Appl. Phys. 55, 125302 (2022)

    Article  Google Scholar 

  11. Mindlin, R.D., Eshel, N.N.: On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 4, 109–124 (1968)

    Article  MATH  Google Scholar 

  12. Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51(8), 1477–1508 (2003)

    Article  MATH  Google Scholar 

  13. Toupin, R.: Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11(1), 385–414 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mindlin, R.D., Tiersten, H.F.: Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11, 415–448 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hadjesfandiari, A.R., Dargush, G.F.: Couple stress theory for solids. Int. J. Solids Struct. 48, 2496–2510 (2011)

    Article  Google Scholar 

  16. Maranganti, R., Sharma, N.D., Sharma, P.: Electromechanical coupling in nonpiezoelectric materials due to nanoscale nonlocal size effects: green’s function solutions and embedded inclusions. Phys. Rev. B. 74, 014110 (2006)

    Article  Google Scholar 

  17. Li, A., Zhou, S., Qi, L.: A reformulated flexoelectric theory for isotropic dielectrics. J. Phys. D Appl. Phys. 48, 465502 (2015)

    Article  Google Scholar 

  18. Shen, S., Hu, S.: A theory of flexoelectricity with surface effect for elastic dielectrics. J. Mech. Phys. Solids. 58, 665–677 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hu, S., Shen, S.: Electric field gradient theory with surface effect for nano-dielectrics. CMC-Comput. Mat. Contin. 13(1), 63–87 (2009)

    Google Scholar 

  20. Wang, G.F., Yu, S.W., Feng, X.Q.: A piezoelectric constitutive theory with rotation gradient effects. Eur. J. Mech. A-Solids 23, 455–466 (2004)

    Article  MATH  Google Scholar 

  21. Hadjesfandiari, A.R.: Size-dependent piezoelectricity. Int. J. Solids Struct. 50, 2781–2791 (2013)

    Article  Google Scholar 

  22. Qu, Y.L., Zhang, G.Y., Fan, Y.M., **, F.: A non-classical theory of elastic dielectrics incorporating couple stress and quadrupole effects: part I–reconsideration of curvature-based flexoelectricity theory. Math. Mech. Solids 26(11), 1647–1659 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, A., Zhou, S., Qi, L., Chen, X.: A flexoelectric theory with rotation gradient effects for elastic dielectrics. Model. Simul. Mater. Sci. Eng. 24, 015009 (2016)

    Article  Google Scholar 

  24. Zhang, G.Y., He, Z.Z., Gao, X.L., Zhou, H.W.: Band gaps in a periodic electro-elastic composite beam structure incorporating microstructure and flexoelectric effects. Arch. Appl. Mech. (2022). https://doi.org/10.1007/s00419-021-02088-9

    Article  Google Scholar 

  25. Zeng, S., Wang, B.L., Wang, K.F.: Static stability analysis of nanoscale piezoelectric shells with flexoelectric effect based on couple stress theory. Microsyst. Technol. 24, 2957–2967 (2018)

    Article  Google Scholar 

  26. Zeng, S., Wang, B.L., Wang, K.F.: Analyses of natural frequency and electromechanical behavior of flexoelectric cylindrical nanoshells under modified couple stress theory. J. Vib. Control. 25(3), 559–570 (2019)

    Article  MathSciNet  Google Scholar 

  27. Chu, L., Dui, G., Yan, Z., Zheng, Y.: Influence of flexoelectricity on electromechanical properties of functionally graded piezoelectric nanobeams based on modified couple stress theory. Int. J. Appl. Mech. 10(09), 1850103 (2018)

    Article  Google Scholar 

  28. Kim, M.: A coupled formulation of finite and boundary element methods for flexoelectric solids. Finite Elem. Anal. Des. 189, 103526 (2021)

    Article  MathSciNet  Google Scholar 

  29. Zhang, G., Qu, Y., Guo, Z., **, F.: Magnetically induced electric potential in first-order composite beams incorporating couple stress and its flexoelectric effects. Acta Mech. Sin. 37(10), 1509–1519 (2021)

    Article  MathSciNet  Google Scholar 

  30. Liu, L.: An energy formulation of continuum magneto-electro-elasticity with applications. J. Mech. Phys. Solids. 63, 451–480 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Codony, D., Marco, O., Fernández-Méndez, S., Arias, I.: An immersed boundary hierarchical B-spline method for flexoelectricity. Comput. Meth. Appl. Mech. Eng. 354, 750–782 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  32. Yang, F., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002)

    Article  MATH  Google Scholar 

  33. Yan, Z., Jiang, L.Y.: Flexoelectric effect on the electroelastic responses of bending piezoelectric nanobeams. J. Appl. Phys. 113, 194102 (2013)

    Article  Google Scholar 

  34. Huang, W., Kwon, S.R., Zhang, S., Yuan, F.G., Jiang, X.: A trapezoidal flexoelectric accelerometer. J. Intell. Mater. Syst. Struct. 25(3), 271–277 (2014)

    Article  Google Scholar 

  35. Zhao, J., Pedroso, D.: Strain gradient theory in orthogonal curvilinear coordinates. Int. J. Solids Struct. 45, 3507–3520 (2008)

    Article  MATH  Google Scholar 

  36. Ojaghnezhad, F., Shodja, H.M.: Second strain gradient theory in orthogonal curvilinear coordinates: prediction of the relaxation of a solid nanosphere and embedded spherical nanocavity. Appl. Math. Model. 276, 669–698 (2019)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2018YFB0703500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shenjie Zhou.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Zhou, S. & Wu, K. A flexoelectric theory with rotation gradient and electric field gradient effects for isotropic dielectrics. Arch Appl Mech 93, 1809–1823 (2023). https://doi.org/10.1007/s00419-022-02357-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-022-02357-1

Keywords

Navigation