Log in

Unsteady elastic diffusion bending model for a Timoshenko beam on a Winkler foundation: unsteady elastic diffusion bending model for a Timoshenko beam on a Winkler foundation

  • Original Paper
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

We consider an unsteady elastic diffusion vibration problem of an orthotropic Timoshenko beam on an elastic foundation under a distributed transverse load. The Winkler model is used as an elastic foundation model. We use the system of Timoshenko beam bending equations taking into account diffusion for the mathematical problem formulation. These equations are obtained with the d’Alembert variational principle applied to the elastic diffusion continuum model. The resulting model considers the diffusion fluxes relaxation. The problem solution is sought as convolutions of Green’s functions with functions defining unsteady distributed disturbances. The integral Laplace transform in time and the expansion in the Fourier series in the longitudinal coordinate are used to find the Green’s functions. A calculation example for the beam with a rectangular section is considered. The beam deflections and the concentration increments under the action of an impulsively applied distributed transverse load are found. Finally, the main conclusions about the coupling effect of the stress–strain state and mass transfer in the beam are represented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bowen, R.M., Garcia, P.J.: On the thermodynamics of mixtures with several temperatures. Int. J. Eng. Sci. 18, 63–83 (1980)

    Article  Google Scholar 

  2. Costa Mattos, H.S., Martins-Costa, M.L., Saldanha da Gamma, R.M.: On the modelling of momentum and energy transfer in imcompressible mixtures. Int. J. Non-Linear Mech. 30, 419–431 (1995)

    Article  Google Scholar 

  3. Mehrer, H.: Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes. Springer, Berlin Heidelberg New York (1985)

    Google Scholar 

  4. Marin, M., Ochsner, A.: The effect of a dipolar structure on the Holder stability in Green–Naghdi thermoelasticity. Continuum Mech. Thermodyn. 29, 1365–1374 (2017)

    Article  MathSciNet  Google Scholar 

  5. Aouadi, M.: A generalized thermoelastic diffusion problem for an infinitely long solid cylinder. Int. J. Math. Math. Sci. 2006, 1–15 (2006)

    Article  MathSciNet  Google Scholar 

  6. Elhagary, M.A.: Generalized thermoelastic diffusion problem for an infinitely long hollow cylinder for short times. Acta Mech. 2006, 205–215 (2006)

    MATH  Google Scholar 

  7. Kumar, R., Kansal, T.: Dynamic problem of generalized thermoelastic diffusive medium. J. Mech. Sci. Technol. 24, 337–342 (2010)

    Article  Google Scholar 

  8. Sherief, H.H., Saleh, H.: A half space problem in the theory of generalized thermoelastic diffusion. Int. J. Solids Struct. 42, 4484–4493 (2005)

    Article  Google Scholar 

  9. Shvecz R.N., Flyachok V.M.: Variacionnyj podxod k resheniyu dinamicheskix zadach mexanotermodiffuzii anizotropnyx obolochek [Variational approach to solving dynamic problems of mechanothermal diffusion of anisotropic shells] Mat. fiz. i nelinejn. mex., Mat. fiz. i nelinejn. mex., 16, 39–43 (1991). (In Russian)

  10. Aouadi, M., Copetti, M.I.M.: Analytical and numerical results for a dynamic contact problem with two stops in thermoelastic diffusion theory. ZAMM Z. Angew. Math. Mech. (2015). https://doi.org/10.1002/zamm.201400285

    Article  Google Scholar 

  11. Copetti, M.I.M., Aouadi, M.: A quasi-static contact problem in thermoviscoelastic diffusion theory. Appl. Numer. Math. 109, 157–183 (2016)

    Article  MathSciNet  Google Scholar 

  12. Aouadi, M., Miranville, A.: Smooth attractor for a nonlinear thermoelastic diffusion thin plate based on Gurtin–Pipkin’s model. Asymptot. Anal. 95, 129–160 (2015)

  13. Aouadi, M.: On thermoelastic diffusion thin plate theory. Appl. Math. Mech. Eng. Ed. 36(5), 619–632 (2015)

    Article  MathSciNet  Google Scholar 

  14. Aouadi, M., Miranville, A.: Quasi-stability and global attractor in nonlinear thermoelastic diffusion plate with memory. Evol. Equ. Control Theory 4(3), 241–263 (2015)

    Article  MathSciNet  Google Scholar 

  15. Bhattacharya, D., Kanoria, M.: The influence of two temperature generalized thermoelastic diffusion inside a spherical shell. Int. J. Eng. Tech. Res. (IJETR) 2(5), 151–159 (2014)

    Google Scholar 

  16. Afanasieva O.A., Gafurov U.S., Zemskov A.V.: nsteady elastic diffusion oscillations of a Timoshenko beam with considering the diffusion relaxation effects. In: Proceedings of the Second International Conference on Theoretical, Applied and Experimental Mechanics, pp. 193–199. Springer, Switzerland AG (2019). https://doi.org/10.1007/978-3-030-21894-2-37

  17. Tarlakovskii, D.V., Zemskov, A.V.: An elastodiffusive orthotropic Euler–Bernoulli beam with considering diffusion flux relaxation. Math. Comput. Appl. 24, 23 (2019). https://doi.org/10.3390/mca24010023

    Article  MathSciNet  Google Scholar 

  18. Zemskov, A.V., Okonechnikov, A.S., Tarlakovskii, D.V.: Unsteady elastic-diffusion oscillations of a simply supported Euler–Bernoulli beam under the distributed transverse load action. In: Altenbach, H., Eremeyev, V.A., Igumnov, L.A. (eds.) Multiscale Solid Mechanics. Advanced Structured Materials, vol. 141, pp. 487–499. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-54928-2-36

    Chapter  Google Scholar 

  19. Zemskov, A.V., Tarlakovskii, D.V.: Modelling of unsteady elastic diffusion oscillations of a Timoshenko beam. In: Altenbach, H., Eremeyev, V.A., Pavlov, I.S., Porubov, A.V. (eds.) Nonlinear Wave Dynamics of Materials and Structures. Advanced Structured Materials, vol. 122, pp. 447–461. Springer, Cham (2020)

    Chapter  Google Scholar 

  20. Vestyak, A.V., Zemskov, A.V.: Unsteady elastic diffusion model of a simply supported Timoshenko beam vibrations. Mech. Solids 55(5), 2982–2990 (2020). https://doi.org/10.3103/S0025654420300068

    Article  Google Scholar 

  21. Serdyuk A.O., Serdyuk D.O., Fedotenkov G.V.: Nestacionarnyi progib anizotropnoi plastiny na uprugom osnovanii [Unsteady deflection of an anisotropic plate on an elastic foundation]. In: Mexanika kompozicionnyx materialov i konstrukcij, slozhnyx i geterogennyx sred. Sbornik trudov 10-j Vserossijskoj nauchnoj konferencii s mezhdunarodnym uchastiem, pp. 199–205. Moscow, Sam Poligrafist (2020). (In Russian)

  22. Pleskachevskij, Yu.M., Starovojtov, E.I., Leonenko, D.V.: Mexanika trexslojnyx sterzhnej i plastin, svyazannyx s uprugim osnovaniem [Mechanics of three-layer rods and plates associated with an elastic foundation], 560 p. Fizmatlit, Moscow (2011). (In Russian)

  23. Grigoriev, I.S., Meylikhov, I.Z.: Fizicheskiye velichiny: Sprovochnik, p. 1232. Energoatomizdat, Moscow (1991). (In Russian)

  24. Nachtrieb, N.H., Handler, G.S.: A relaxed vacancy model for diffusion incrystalline metals. Acta Metall. 2(6), 797–802 (1954)

    Article  Google Scholar 

  25. Petit, J., Nachtrieb, N.H.: Self-diffusion in liquid gallium. J. Chem. Phys. 24, 1027 (1956)

    Article  Google Scholar 

Download references

Funding

This work was funded by the subsidy from RFBR (Project No. 20-08-00589 A).

Author information

Authors and Affiliations

Authors

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zemskov, A.V., Tarlakovskii, D.V. Unsteady elastic diffusion bending model for a Timoshenko beam on a Winkler foundation: unsteady elastic diffusion bending model for a Timoshenko beam on a Winkler foundation. Arch Appl Mech 92, 1355–1366 (2022). https://doi.org/10.1007/s00419-022-02112-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-022-02112-6

Keywords

Navigation