Log in

Vibration response analysis of plate with microfloating raft arrays under multi-point random excitation

  • Technical notes
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Inspired by the traditional floating raft vibration suppression system, in order to solve the problem of random vibration of the plate, through miniaturizing the floating raft system and using the microfloating raft arrays to replace the distributed dynamic vibration absorbers, a plate with microfloating raft arrays is constructed in this paper. The vibration response equation of the structure under multi-point random excitation is established by using modal superposition method. The auto-power spectral density (APSD) of displacement is obtained by using MATLAB, and the influence of system parameters on the vibration response is analyzed. Optimal combination of parameters is obtained by the generalized pattern search algorithm. Vibration reduction effect of this structure is analyzed. The results show that redistribution of microfloating raft element interval and an increase in the thickness, flexural rigidity and dam** of the plate could increase the vibration suppression effect. It is also shown that an increase in mass ratio and stiffness ratio of the microfloating raft element could significantly reduce the vibration of the plate. When it achieves the optimal vibration suppression effect, the mass ratio, the stiffness ratio and the dam** ratio are 0.3, 8.8562 and 4.7660, respectively. Compared with other plate structures, the plate with microfloating raft arrays of optimal parameter has the minimum APSD of displacement and minimum energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  1. Kirchhoff, G.: Ueber das Gleichgewhicht und die Bewegung einer elastischen. Scheibe. J. Reine Angew. Math. 40, 51–88 (1850)

    Google Scholar 

  2. Warburton, G.B.: The vibration of rectangular plates. Proc. Inst. Mech. Eng. 168, 371–384 (1954)

    Article  MathSciNet  Google Scholar 

  3. Heuer, R., Irschik, H.: A boundary element method for eigenvalue problems of polygonal membranes and plates. Acta Mech. 66(1–4), 9–20 (1987)

    Article  Google Scholar 

  4. Thompson, L.L.: On optimal stabilized MITC4 plate bending elements for accurate frequency response analysis. Comput. Struct. 81, 995–1008 (2003)

    Article  Google Scholar 

  5. Bui, T.Q., Nguyen, M.N., Zhang, C.: An efficient meshfree method for vibration analysis of laminated composite plates. Comput. Mech. 48(2), 175–193 (2011)

    Article  Google Scholar 

  6. Bui, T.Q., Nguyen, M.N.: A moving Kriging interpolation-based meshfree method for free vibration analysis of Kirchhoff plates. Comput. Struct. 89(3–4), 380–394 (2011)

    Article  Google Scholar 

  7. Tang, T., Hirose, S., et al.: A simple FSDT-based isogeometric analysis for geometrically nonlinear analysis of functionally graded plates. Finite Elem. Anal. Des. 96, 1–10 (2015)

    Article  Google Scholar 

  8. Vo, D., Nanakorn, P., Bui, T.Q.: Geometrically nonlinear multi-patch isogeometric analysis of spatial Euler-Bernoulli beam structures. Comput. Method Appl. M 380, 113808 (2021)

    Article  MathSciNet  Google Scholar 

  9. Yu, T., Yin, S., Bui, T.Q., et al.: NURBS-based isogeometric analysis of buckling and free vibration problems for laminated composites plates with complicated cutouts using a new simple FSDT theory and level set method. Thin Wall Struct. 101, 141–156 (2016)

    Article  Google Scholar 

  10. Frahm. H.: Device for dam** vibrations of bodies, US Patent Nos. 989, 958, pp.3576–3580 (1911)

  11. Jacquot, R.G.: Suppression of random vibration in plates using vibration absorbers. J. Sound Vib. 248(4), 585–596 (2001)

    Article  Google Scholar 

  12. Cheung, Y.L., Wong, W.O.: H∞ and H2 optimizations of a dynamic vibration absorber for suppressing vibrations in plates. J. Sound Vib. 320, 29–42 (2009)

    Article  Google Scholar 

  13. Dayou, J.: Fixed-points theory for global vibration control using vibration neutralizer. J. Sound Vib. 292(3–5), 765–776 (2006)

    Article  Google Scholar 

  14. Asami, T.: Optimal design of double-mass dynamic vibration absorbers arranged in series or in parallel. J. Vib. Acoust. 139(1), 011015 (2017)

    Article  Google Scholar 

  15. Nishihara, O., Asami, T.: Minimization of maximum amplitude magnification factor in double-mass dynamic vibration absorbers. Proc. Dyn. Des. 2016, 231 (2016)

    Google Scholar 

  16. Zhu, X., Chen, Z., Jiao, Y.: Optimizations of distributed dynamic vibration absorbers for suppressing vibrations in plates. J. Low Freq. Noise V A. 37(4), 146134841879456 (2018)

    Google Scholar 

  17. Zhu, X., Liu, X., Jiao, Y., Chen, Z.: Optimization method for distributed dynamic vibration absorbers applied in vibration reduction of damped thin plate structures. J. Vib. Shock. 38(11), 75–80 (2019)

    Google Scholar 

  18. Ari, M., Faal, R.T.: Passive vibration suppression of plate using multiple optimal dynamic vibration absorbers. Arch. Appl. Mech. 90(4), 1–40 (2020)

    Google Scholar 

  19. Igusa, T., Xu, K.: Vibration control using multiple tuned mass dampers. J. Sound Vib. 175(4), 491–503 (1994)

    Article  Google Scholar 

  20. Azoulay, M., Veprik, A., Babitsky, V., et al.: Distributed absorber for noise and vibration control. Shock Vib. 18(1–2), 181–219 (2011)

    Article  Google Scholar 

  21. Nelson, P.A.: Vibration isolation on floating floors. Appl Acoust. 15(2), 97–109 (1982)

    Article  Google Scholar 

  22. **ong, Y.P., **ng, J.T., Price, W.G.: Power flow analysis of complex coupled systems by progressive approaches. J. Sound Vib. 239(2), 275–295 (2001)

    Article  Google Scholar 

  23. Li, T.Y., Zhang, X.M., Zuo, Y.T., et al.: Structural power flow analysis for a consisting of constrained damped beams. J. Sound Vib. 202(1), 47–54 (1997)

    Article  Google Scholar 

  24. Choi, W.J., **ong, Y.P., Shenoi, R.A.: Power flow analysis for a floating sandwich raft isolation system using a higher-order theory. J. Sound Vib. 319(1–2), 228–246 (2009)

    Article  Google Scholar 

  25. Niu, J., Song, K., Lim, C.W.: On active vibration isolation of floating raft system. J. Sound Vib. 285(1–2), 391–406 (2005)

    Article  Google Scholar 

  26. Song, Y., Wen, J., Yu, D., et al.: Suppression of vibration and noise radiation in a flexible floating raft system using periodic structures. J. Vib Control. 21(2), 217–228 (2013)

    Article  Google Scholar 

  27. Li, Y., Xu, D.: Vibration attenuation of high dimensional quasi-zero stiffness floating raft system. Int. J. Mech. Sci. 126, 186–195 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The work is supported by the National Natural Science Foundation of China (Grant No.51775123).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, S., Liu, S., Zhao, D. et al. Vibration response analysis of plate with microfloating raft arrays under multi-point random excitation. Arch Appl Mech 91, 4081–4096 (2021). https://doi.org/10.1007/s00419-021-02028-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-021-02028-7

Keywords

Navigation