Log in

Arch-piers systems subjected to vertical loads: a comprehensive review of rotational, sliding and mixed collapse modes

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This paper presents a study of the stability and collapse modes of a system made up of a masonry arch resting on two piers subject to its own weight. It examines both semicircular arches and three different types of pointed arches commonly found in architecture, namely low-pointed, equilateral, and lancet-pointed arches. The collapse modes characterizing each type of arch-piers systems are then compared by extending the results obtained by the authors in previous work on stand-alone masonry arches of different shapes. The mechanical behavior of these systems is examined via Durand-Claye’s method in order to follow the evolution of the stability area and determine the collapse modes of these masonry structures. The method takes into account both the bounded bending capacity of the arch cross section and the limited friction along the joints. Furthermore, the system’s safe domain is determined in terms of the limit conditions for arch thickness, pier height and friction coefficient. As expected, arch-piers systems of different shapes exhibit different behaviors at collapse in terms of minimum thickness and collapse modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Frézier A.F.: La théorie et la pratique de la coupe des pierres et des bois pour la construction des voûtes et autres parties des bâtimens civils et militaires ou traité de stéréotomie à l’usage de l’architecture, 380–388, Strasburg-Paris (1737–1739)

  2. Sanabria, S.L.: The mechanization of design in the 16th century: the structural formulae of Rodrigo Gil de Hontañón. J. Soc. Archit. Hist. 41, 281–293 (1982)

    Article  Google Scholar 

  3. Huerta, S.: Diseño estructural de arcos, bovedas y cupolas en España ca1500 - ca 1800. Tesis dirigida por Ricardo Aroca Hernandez Ros, Escuela Técnica Superior de Arquitectura de Madrid (1990)

  4. Huerta Fernández, S.: The medieval ‘scientia’ of structures: the rules of Rodrigo Gil de Hontañón. In: Becchi, A., Corradi, M., Foce, F., Pedemonte, O. (eds.) Towards a History of Construction. Dedicated to Edoardo Benvenuto, series Between Mechanics and Architecture, pp. 567–585. Birkhäuser, Basel (2002)

  5. Benvenuto, E.: La scienza delle costruzioni e il suo sviluppo storico. Sansoni, Firenze (1981)

    Google Scholar 

  6. Sacco, S.: “Coupe des pierres” e interpretazione statica del costruito nei trattati di stereotomia, tesi di laurea, Università di Genova (1997)

  7. Becchi, A., Foce, F.: Degli archi e delle volte. Arte del costruire tra meccanica e stereotomia. Marsilio, Venezia (2002)

    Google Scholar 

  8. Sakarovitch, J.: Entre mécanique et géometrie: penser l’architecture clavée, l’exemple de Frézier. In: Becchi, A., Corradi, M., Foce, F., Pedemonte, O. (eds.) Towards a history of construction. Dedicated to Edoardo Benvenuto, series Between mechanics and architecture, pp. 587–600. Birkhäuser, Basel (2002)

  9. Alberti, L.B.: De re aedificatoria. Nicolaus Laurentus, Florentiae (1485)

  10. Guarini, G.: Modo di Misurare le fabbriche di d. Guarino Guarini C.R. teatino matem. di S.A.R. Eredi Giannelli, Torino (1674)

  11. Delorme, Ph: Le premier tome de l’Architecture. F. Morel, Paris (1567)

  12. La Hire, Ph. de: Traité de mécanique, où l’on explique tout ce qui est necessaire dans la pratique des Arts (1695), Mémoires de l’Académie Royale des Sciences, vol. 9, 1–333 (1730)

  13. La Hire, Ph. de: Sur la construction des voûtes dans les édifices, Mémoires de l’Académie Royale des Sciences, année 1712, 69–77, Paris (1731)

  14. Buti, A., Corradi, M.: I contributi di un matematico del XVII secolo ad un problema di architettura: Philippe de La Hire e la statica degli archi. Atti dell’Accademia ligure di scienze e lettere 38, 303–323 (1981)

    Google Scholar 

  15. Foce, F., Sinopoli, A.: Per una teoria dell’analisi limite dell’arco murario come sistema di conci rigidi soggetti a vincoli unilaterali e attrito. In: De Pasquale, S. (ed.) Costruzioni voltate in muratura, Libreria Alfani Editrice. Firenze (2001)

  16. Sinopoli, A.: A re-examination of some theories on vaulted structures: the role of geometry from Leonardo to De La Hire. In: Becchi, A., Corradi, M., Foce, F., Pedemonte, O. (eds.) Towards a History of Construction. Dedicated to Edoardo Benvenuto, series Between mechanics and architecture, pp. 601–624. Birkhäuser, Basel (2002)

  17. Aita, D., Barsotti, R., Bennati, S.: Analysis of some historical sizing rules for arch-wall-piers systems. In: Biliszczuk, J., Bién, J., Hawryszków, P., Kamiński, T. (eds.), 8th International Conference on Arch Bridges. ARCH 2016. Arch Bridges in Culture, DWE, Wrocław, ISBN 978-83-7125-265-5 (extended abstract 426–429; paper on CD-ROM) (2016)

  18. Aita, D., Barsotti, R., Bennati, S.: The collapse of a magasin à poudre described by Frézier: an interesting case study from the past. In: Ascione, L., Berardi, V., Feo, L., Fraternali, F., Tralli, A.M. (eds.) AIMETA 2017 - Proceedings of the XXIII Conference of the Italian Association of Theoretical and Applied Mechanics, pp. 1429–1437. Gechi Edizioni, Milano (2017)

  19. Durand-Claye, A.: Note sur la vérification de la stabilité des voûtes en maçonnerie et sur l’emploi des courbes de pression. Ann. des Ponts et Chaussées 13, 63–93 (1867)

    Google Scholar 

  20. Durand-Claye, A.: Note sur la verification de la stabilité des arcs métalliques et sur l’emploi des courbes de pression. Ann. des Ponts et Chaussées 15, 109–144 (1868)

    Google Scholar 

  21. Foce, F., Aita, D.: The masonry arch between ‘limit’ and ‘elastic’ analysis. A critical re-examination of Durand-Claye’s method. In: Huerta, S. (ed.) Proceedings of the First International Congress on Construction History, Madrid, 20–24 January 2003, vol. 2, pp. 895–908. Instituto Juan De Herrera, Madrid (2003)

  22. Aita, D., Barsotti, R., Bennati, S.: Notes on limit and nonlinear elastic analyses of masonry arches. In: Aita, D., Pedemonte, O., Williams, K. (eds.) Masonry Structures: Between Mechanics and Architecture, pp. 237–264. Birkhäuser, Basel (2015). https://doi.org/10.1007/978-3-319-13003-3_9

  23. Aita, D., Barsotti, R., Bennati, S.: Looking at the collapse modes of circular and pointed masonry arches through the lens of Durand-Claye’s stability area method. Arch. Appl. Mech. 89, 1537–1554 (2019). https://doi.org/10.1007/s00419-019-01526-z

    Article  Google Scholar 

  24. Makris, N., Alexakis, H.: The effect of stereotomy on the shape of the thrust-line and the minimum thickness of semicircular masonry arches. Arch. Appl. Mech. 83, 1511–1533 (2013)

    Article  Google Scholar 

  25. Alexakis, H., Makris, N.: Minimum thickness of elliptical masonry arches. Acta Mech. 224, 2977–2991 (2013)

    Article  MathSciNet  Google Scholar 

  26. Alexakis, H., Makris, N.: Limit equilibrium analysis of masonry arches. Arch. Appl. Mech. 85, 1363–1381 (2015)

    Article  Google Scholar 

  27. Nikolic, D.: Thrust line analysis and the minimum thickness of pointed masonry arches. Acta Mech. 228, 2219–2236 (2017)

    Article  MathSciNet  Google Scholar 

  28. Milankovitch, M.: Beitrag zur Theorie der Druckkurven. Dissertation zur Erlangung der Doktorwürde, K.K. technische Hochschule, Vienna (1904)

  29. Milankovitch, M.: Theorie der Druckkurven. Z. Math. und Phys. 55, 1–27 (1907)

    MATH  Google Scholar 

  30. Sinopoli, A., Corradi, M., Foce, F.: Modern formulation for preelastic theories on masonry arches. J. Eng. Mech. 123, 204–213 (1997)

    Article  Google Scholar 

  31. Gilbert, M., Casapulla, C., Ahmed, A.H.: Limit analysis of masonry block structures with non-associative frictional joints using linear programming. Comput. Struct. 84, 873–887 (2006)

    Article  Google Scholar 

  32. Rizzi, E., Colasante, G., Frigerio, A., Cocchetti, G.: On the mixed collapse mechanism of semi-circular masonry arches, Structural Analysis of Historical Constructions – Jerzy Jasieńko (ed.), DWE (2012)

  33. Zampieri, P., Zanini, M.A., Faleschini, F., Hofer, L., Pellegrino, C.: Failure analysis of masonry arch bridges subject to local pier scour. Eng. Fail. Anal. 79, 371–384 (2017)

    Article  Google Scholar 

  34. Pulatsu, B., Erdogmus, E., Bretas, E.M. Lourenço, P.B.: In-Plane Static Response of Dry-Joint Masonry Arch-Pier Structures, Architectural Engineering Institute (AEI) Conference, April 3–6 (2019)

  35. Leonardo da Vinci, Forster Code II, fol. 82v, drawn from Benvenuto E., An introduction to the history of structural mechanics, Vol. II. Springer, New York (1991)

  36. Boothby, T.: Stability of Masonry Piers and arches including sliding. J. Eng. Mech. 120(2), 304–319 (1994)

    Article  Google Scholar 

  37. Baggio, C., Trovalusci, P.: Collapse behaviour of three-dimensional brick-block systems using non-linear programming. Struct. Eng. Mech. 10(2), 181–195 (2000)

    Article  Google Scholar 

  38. Casapulla, C.: Dry rigid block masonry: safe solutions in presence of Coulomb friction. Trans. Built Environ. 55, 251–261 (2001)

    Google Scholar 

  39. Simon, József, Bagi, Katalin: Discrete element analysis of the minimum thickness of oval Masonry Domes. Int. J. Archit. Herit. 10(4), 457–475 (2016). https://doi.org/10.1080/15583058.2014.996921

    Article  Google Scholar 

  40. Beatini, V., Royer-Carfagni, G., Tasora, A.: Modeling the shear failure of segmental arches. Int. J. Solids Struct. 158, 21–39 (2019). https://doi.org/10.1016/j.ijsolstr.2018.08.023

    Article  MATH  Google Scholar 

  41. Aita, D., Sinopoli, A.: Revisiting Monasterio’s unpublished manuscript: a critical review of the collapse modes analysis of non-symmetric and symmetric masonry arches. Int. J. Archit. Herit. 14(5), 762–793 (2020). https://doi.org/10.1080/15583058.2019.1648586

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danila Aita.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aita, D., Barsotti, R. & Bennati, S. Arch-piers systems subjected to vertical loads: a comprehensive review of rotational, sliding and mixed collapse modes. Arch Appl Mech 91, 241–256 (2021). https://doi.org/10.1007/s00419-020-01766-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-020-01766-4

Keywords

Navigation