Log in

Classic lattice corneal dystrophy: a brief review and summary of treatment modalities

  • Review Article
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To provide a brief summary and comparison of the most recent literature on available and theorized treatment modalities for classic lattice corneal dystrophy (LCD). This paper aims to support practitioners in their management of this disease.

Methods

A search was carried out on available literature through PubMed and Google Scholar of English language articles up to January 2023 that relate to the treatment of LCD. Due to scarcity of literature regarding specific novel therapies for LCD, results from other corneal pathologies (granular corneal dystrophy, corneal scarring) are sometimes included for contrast, which is clearly denoted.

Results

LCD is a slowly progressive disease that leads to recurrent epithelial corneal erosions, stromal haze, corneal opacification, substantial discomfort, and visual impairment. Due to its autosomal-dominant inheritance pattern, this disease can persist throughout ancestral lines and requires consistent treatment and follow-up. An optimal management plan is necessary to (1) prolong years of life with best achievable visual acuity; (2) treat painful recurrent corneal erosions as they occur; (3) ensure proper follow-up throughout the life of a patient, as well as monitor at-risk offspring; and (4) monitor efficacy of treatment.

Conclusions

This paper addresses (1) treatment for early disease including corneal epithelial debridement, photo therapeutic keratectomy (PTK), femtosecond laser–assisted lamellar keratectomy (FLK), and others; (2) treatment for late disease including full thickness keratoplasties and anterior lamellar keratoplasties; and (3) potential future treatment considerations including a wide variety of topical/systemic, genetic, and regenerative approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Weiss JS, Moller HU, Aldave AJ, Seitz B, Bredrup C, Kivela T, Munier FL, Rapuano CJ, Nischal KK, Kim EK, Sutphin J, Busin M, Labbe A, Kenyon KR, Kinoshita S, Lisch W (2015) IC3D classification of corneal dystrophies–edition 2. Cornea 34:117–159. https://doi.org/10.1097/ICO.0000000000000307

    Article  PubMed  Google Scholar 

  2. Munier FL, Frueh BE, Othenin-Girard P, Uffer S, Cousin P, Wang MX, Heon E, Black GC, Blasi MA, Balestrazzi E, Lorenz B, Escoto R, Barraquer R, Hoeltzenbein M, Gloor B, Fossarello M, Singh AD, Arsenijevic Y, Zografos L, Schorderet DF (2002) BIGH3 mutation spectrum in corneal dystrophies. Invest Ophthalmol Vis Sci 43:949–954

    PubMed  Google Scholar 

  3. Kheir V, Cortes-Gonzalez V, Zenteno JC, Schorderet DF (2019) Mutation update: TGFBI pathogenic and likely pathogenic variants in corneal dystrophies. Hum Mutat 40:675–693. https://doi.org/10.1002/humu.23737

    Article  CAS  PubMed  Google Scholar 

  4. Fukuoka H, Kawasaki S, Yamasaki K, Matsuda A, Fukumoto A, Murakami A, Kinoshita S (2010) Lattice corneal dystrophy type IV (p.Leu527Arg) is caused by a founder mutation of the TGFBI gene in a single Japanese ancestor. Invest Ophthalmol Vis Sci 51:4523–4530. https://doi.org/10.1167/iovs.10-5343

    Article  PubMed  Google Scholar 

  5. Runager K, Basaiawmoit RV, Deva T, Andreasen M, Valnickova Z, Sorensen CS, Karring H, Thogersen IB, Christiansen G, Underhaug J, Kristensen T, Nielsen NC, Klintworth GK, Otzen DE, Enghild JJ (2011) Human phenotypically distinct TGFBI corneal dystrophies are linked to the stability of the fourth FAS1 domain of TGFBIp. J Biol Chem 286:4951–4958. https://doi.org/10.1074/jbc.M110.181099

    Article  CAS  PubMed  Google Scholar 

  6. Han J, Zhang M, Lin HY, Huang FY, Lin YY, Tan GH, Zheng ZY (2019) Impaired autophagic degradation of transforming growth factor-beta-induced protein by macrophages in lattice corneal dystrophy. Invest Ophthalmol Vis Sci 60:978–989. https://doi.org/10.1167/iovs.18-25838

    Article  CAS  PubMed  Google Scholar 

  7. Poulsen ET, Runager K, Risor MW, Dyrlund TF, Scavenius C, Karring H, Praetorius J, Vorum H, Otzen DE, Klintworth GK, Enghild JJ (2014) Comparison of two phenotypically distinct lattice corneal dystrophies caused by mutations in the transforming growth factor beta induced (TGFBI) gene. Proteomics Clin Appl 8:168–177. https://doi.org/10.1002/prca.201300058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Courtney DG, Poulsen ET, Kennedy S, Moore JE, Atkinson SD, Maurizi E, Nesbit MA, Moore CB, Enghild JJ (2015) Protein composition of TGFBI-R124C- and TGFBI-R555W-associated aggregates suggests multiple mechanisms leading to lattice and granular corneal dystrophy. Invest Ophthalmol Vis Sci 56:4653–4661. https://doi.org/10.1167/iovs.15-16922

    Article  CAS  PubMed  Google Scholar 

  9. Grothe HL, Little MR, Sjogren PP, Chang AA, Nelson EF, Yuan C (2013) Altered protein conformation and lower stability of the dystrophic transforming growth factor beta-induced protein mutants. Mol Vis 19:593–603

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Underhaug J, Koldso H, Runager K, Nielsen JT, Sorensen CS, Kristensen T, Otzen DE, Karring H, Malmendal A, Schiott B, Enghild JJ, Nielsen NC (2013) Mutation in transforming growth factor beta induced protein associated with granular corneal dystrophy type 1 reduces the proteolytic susceptibility through local structural stabilization. Biochim Biophys Acta 1834:2812–2822. https://doi.org/10.1016/j.bbapap.2013.10.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kolozsvari L, Nogradi A, Hopp B, Bor Z (2002) UV absorbance of the human cornea in the 240- to 400-nm range. Invest Ophthalmol Vis Sci 43:2165–2168

    PubMed  Google Scholar 

  12. Kitamoto K, Taketani Y, Fujii W, Inamochi A, Toyono T, Miyai T, Yamagami S, Kuroda M, Usui T, Ouchi Y (2020) Generation of mouse model of TGFBI-R124C corneal dystrophy using CRISPR/Cas9-mediated homology-directed repair. Sci Rep 10:2000. https://doi.org/10.1038/s41598-020-58876-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ellies P, Renard G, Valleix S, Boelle PY, Dighiero P (2002) Clinical outcome of eight BIGH3-linked corneal dystrophies. Ophthalmology 109:793–797. https://doi.org/10.1016/s0161-6420(01)01025-9

    Article  PubMed  Google Scholar 

  14. Mohamed A, Chaurasia S, Ramappa M, Murthy SI, Garg P (2018) Outcomes of keratoplasty in lattice corneal dystrophy in a large cohort of Indian eyes. Indian J Ophthalmol 66:666–672. https://doi.org/10.4103/ijo.IJO_1150_17

    Article  PubMed  PubMed Central  Google Scholar 

  15. Meisler DM, Fine M (1984) Recurrence of the clinical signs of lattice corneal dystrophy (type I) in corneal transplants. Am J Ophthalmol 97:210–214. https://doi.org/10.1016/s0002-9394(14)76092-1

    Article  CAS  PubMed  Google Scholar 

  16. Snead DR, Mathews BN (2002) Differences in amyloid deposition in primary and recurrent corneal lattice dystrophy type 1. Cornea 21:308–311. https://doi.org/10.1097/00003226-200204000-00014

    Article  PubMed  Google Scholar 

  17. Lisch W, Seitz B (2014) Lattice corneal dystrophy type 1: an epithelial or stromal entity? Cornea 33:1109–1112. https://doi.org/10.1097/ICO.0000000000000202

    Article  PubMed  Google Scholar 

  18. Ramsay RM (1960) Familial corneal dystrophy-lattice type. Trans Can Opthalmolog Soc 23:222–229

    CAS  PubMed  Google Scholar 

  19. Marles S (1994) Linkage studies of lattice corneal dystrophy type 1. Master’s thesis. University of Manitoba

  20. Pereira-Souza AL, Ambrosio R Jr, Bandeira F, Salomao MQ, Souza Lima A, Wilson SE (2022) Topical losartan for treating corneal fibrosis (haze): first clinical experience. J Refract Surg 38:741–746. https://doi.org/10.3928/1081597X-20221018-02

    Article  PubMed  Google Scholar 

  21. Miller DD, Hasan SA, Simmons NL, Stewart MW (2019) Recurrent corneal erosion: a comprehensive review. Clin Ophthalmol 13:325–335. https://doi.org/10.2147/OPTH.S157430

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kato Y, Yagi H, Kaji Y, Oshika T, Goto Y (2013) Benzalkonium chloride accelerates the formation of the amyloid fibrils of corneal dystrophy-associated peptides. J Biol Chem 288:25109–25118. https://doi.org/10.1074/jbc.M113.477695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bae SS, Chan CC (2018) Superficial keratectomy: indications and outcomes. Can J Ophthalmol 53:553–559. https://doi.org/10.1016/j.jcjo.2018.01.030

    Article  PubMed  Google Scholar 

  24. Cohen EJ (2007) Debridement for visual symptoms resulting from anterior basement membrane corneal dystrophy. Am J Ophthalmol 144:288–289. https://doi.org/10.1016/j.ajo.2007.05.024

    Article  PubMed  Google Scholar 

  25. Itty S, Hamilton SS, Baratz KH, Diehl NN, Maguire LJ (2007) Outcomes of epithelial debridement for anterior basement membrane dystrophy. Am J Ophthalmol 144:217–221. https://doi.org/10.1016/j.ajo.2007.04.024

    Article  PubMed  Google Scholar 

  26. Soong HK, Farjo Q, Meyer RF, Sugar A (2002) Diamond burr superficial keratectomy for recurrent corneal erosions. Br J Ophthalmol 86:296–298. https://doi.org/10.1136/bjo.86.3.296

    Article  PubMed  PubMed Central  Google Scholar 

  27. Sridhar MS, Rapuano CJ, Cosar CB, Cohen EJ, Laibson PR (2002) Phototherapeutic keratectomy versus diamond burr polishing of Bowman’s membrane in the treatment of recurrent corneal erosions associated with anterior basement membrane dystrophy. Ophthalmology 109:674–679. https://doi.org/10.1016/s0161-6420(01)01027-2

    Article  CAS  PubMed  Google Scholar 

  28. Tzelikis PF, Rapuano CJ, Hammersmith KM, Laibson PR, Cohen EJ (2005) Diamond burr treatment of poor vision from anterior basement membrane dystrophy. Am J Ophthalmol 140:308–310. https://doi.org/10.1016/j.ajo.2005.01.036

    Article  PubMed  Google Scholar 

  29. Vo RC, Chen JL, Sanchez PJ, Yu F, Aldave AJ (2015) Long-term outcomes of epithelial debridement and diamond burr polishing for corneal epithelial irregularity and recurrent corneal erosion. Cornea 34:1259–1265. https://doi.org/10.1097/ICO.0000000000000554

    Article  PubMed  Google Scholar 

  30. Morita Y, Chikama T, Yamada N, Morishige N, Sonoda KH, Nishida T (2012) New mode of treatment for lattice corneal dystrophy type I: corneal epithelial debridement and fibronectin eye drops. Jpn J Ophthalmol 56:26–30. https://doi.org/10.1007/s10384-011-0104-5

    Article  PubMed  Google Scholar 

  31. Das S, Langenbucher A, Seitz B (2005) Delayed healing of corneal epithelium after phototherapeutic keratectomy for lattice dystrophy. Cornea 24:283–287. https://doi.org/10.1097/01.ico.0000138853.26332.55

    Article  PubMed  Google Scholar 

  32. Foerster CG, Langenbucher A, Cursiefen C, Kruse FE, Seitz B (2007) Delayed epithelial healing after keratoplasty for lattice corneal dystrophy. Cornea 26:1182–1183. https://doi.org/10.1097/ICO.0b013e318151f8cc

    Article  PubMed  Google Scholar 

  33. Kawamoto K, Morishige N, Yamada N, Chikama T, Nishida T (2006) Delayed corneal epithelial wound healing after penetrating keratoplasty in individuals with lattice corneal dystrophy. Am J Ophthalmol 142:173–174. https://doi.org/10.1016/j.ajo.2006.01.077

    Article  PubMed  Google Scholar 

  34. Nemeth G, Felszeghy S, Kenyeres A, Szentmary N, Berta A, Suveges I, Modis L (2008) Cell adhesion molecules in stromal corneal dystrophies. Histol Histopathol 23:945–952. https://doi.org/10.14670/HH-23.945

    Article  PubMed  Google Scholar 

  35. Resch MD, Schlotzer-Schrehardt U, Hofmann-Rummelt C, Kruse FE, Seitz B (2009) Alterations of epithelial adhesion molecules and basement membrane components in lattice corneal dystrophy (LCD). Graefes Arch Clin Exp Ophthalmol 247:1081–1088. https://doi.org/10.1007/s00417-009-1046-1

    Article  CAS  PubMed  Google Scholar 

  36. Dinh R, Rapuano CJ, Cohen EJ, Laibson PR (1999) Recurrence of corneal dystrophy after excimer laser phototherapeutic keratectomy. Ophthalmology 106:1490–1497. https://doi.org/10.1016/S0161-6420(99)90441-4

    Article  CAS  PubMed  Google Scholar 

  37. Reddy JC, Rapuano CJ, Nagra PK, Hammersmith KM (2013) Excimer laser phototherapeutic keratectomy in eyes with corneal stromal dystrophies with and without a corneal graft. Am J Ophthalmol 155(1111–1118):e1112. https://doi.org/10.1016/j.ajo.2012.12.016

    Article  Google Scholar 

  38. Sauvageot P, Julio G, Bolanos JV, Carrera M, de Toledo JA, Barraquer RI (2022) Recurrence and visual outcomes of phototherapeutic keratectomy in lattice corneal dystrophy: a cohort study. J Refract Surg 38:43–49. https://doi.org/10.3928/1081597X-20211104-01

    Article  PubMed  Google Scholar 

  39. Ellies P, Bejjani RA, Bourges JL, Boelle PY, Renard G, Dighiero P (2003) Phototherapeutic keratectomy for BIGH3-linked corneal dystrophy recurring after penetrating keratoplasty. Ophthalmology 110:1119–1125. https://doi.org/10.1016/S0161-6420(03)00229-X

    Article  PubMed  Google Scholar 

  40. Hieda O, Sotozono C, Nakamura Y, Wakimasu K, Kinoshita S (2021) Surgical outcomes of re-excimer laser phototherapeutic keratectomy (re-PTK). Sci Rep 11:11503. https://doi.org/10.1038/s41598-021-91121-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Das S, Langenbucher A, Seitz B (2005) Excimer laser phototherapeutic keratectomy for granular and lattice corneal dystrophy: a comparative study. J Refract Surg 21:727–731. https://doi.org/10.3928/1081-597X-20051101-12

    Article  PubMed  Google Scholar 

  42. Stewart OG, Pararajasegaram P, Cazabon J, Morrell AJ (2002) Visual and symptomatic outcome of excimer phototherapeutic keratectomy (PTK) for corneal dystrophies. Eye (Lond) 16:126–131. https://doi.org/10.1038/sj.eye.6700049

    Article  CAS  PubMed  Google Scholar 

  43. Orndahl MJ, Fagerholm PP (1998) Treatment of corneal dystrophies with phototherapeutic keratectomy. J Refract Surg 14:129–135. https://doi.org/10.3928/1081-597X-19980301-11

    Article  CAS  PubMed  Google Scholar 

  44. Nagpal R, Maharana PK, Roop P, Murthy SI, Rapuano CJ, Titiyal JS, Vajpayee RB, Sharma N (2020) Phototherapeutic keratectomy. Surv Ophthalmol 65:79–108. https://doi.org/10.1016/j.survophthal.2019.07.002

    Article  PubMed  Google Scholar 

  45. Steger B, Romano V, Biddolph S, Willoughby CE, Batterbury M, Kaye SB (2016) Femtosecond laser-assisted lamellar keratectomy for corneal opacities secondary to anterior corneal dystrophies: an interventional case series. Cornea 35:6–13. https://doi.org/10.1097/ICO.0000000000000665

    Article  PubMed  Google Scholar 

  46. Lee J, Kim JH, Lee D, Chang JW, Shin JY, Seo JW, Seo MH, Moon NJ (2018) Long-term clinical outcome of femtosecond laser-assisted lamellar keratectomy with phototherapeutic keratectomy in anterior corneal stromal dystrophy. Br J Ophthalmol 102:31–36. https://doi.org/10.1136/bjophthalmol-2017-310189

    Article  PubMed  Google Scholar 

  47. Arora T, Arora S, Sharma V (2016) Femtosecond laser-assisted lamellar keratectomy for anterior corneal dystrophies. Cornea 35:e7-8. https://doi.org/10.1097/ICO.0000000000000744

    Article  PubMed  Google Scholar 

  48. Kawashima M, Kawakita T, Den S, Shimmura S, Tsubota K, Shimazaki J (2006) Comparison of deep lamellar keratoplasty and penetrating keratoplasty for lattice and macular corneal dystrophies. Am J Ophthalmol 142:304–309. https://doi.org/10.1016/j.ajo.2006.03.057

    Article  PubMed  Google Scholar 

  49. Akhtar S, Meek KM, Ridgway AE, Bonshek RE, Bron AJ (1999) Deposits and proteoglycan changes in primary and recurrent granular dystrophy of the cornea. Arch Ophthalmol 117:310–321. https://doi.org/10.1001/archopht.117.3.310

    Article  CAS  PubMed  Google Scholar 

  50. Spelsberg H, Reinhard T, Henke L, Berschick P, Sundmacher R (2004) Penetrating limbo-keratoplasty for granular and lattice corneal dystrophy: survival of donor limbal stem cells and intermediate-term clinical results. Ophthalmology 111:1528–1533. https://doi.org/10.1016/j.ophtha.2004.01.030

    Article  PubMed  Google Scholar 

  51. Lang SJ, Eberwein P, Reinshagen H, Reinhard T, Sundmacher R (2015) Simultaneous transplantation of limbal stem cells may reduce recurrences of granular dystrophy after corneal transplantation: 2 long-term case reports. Medicine (Baltimore) 94:e789. https://doi.org/10.1097/MD.0000000000000789

    Article  PubMed  Google Scholar 

  52. Vandemeulebroecke N, Spelsberg H (2008) Homologous penetrating central limbokeratoplasty versus conventional homologous penetrating keratoplasty and hard contact lens in granular and lattice corneal dystrophy. Invest Ophthalmol Vis Sci 49:2334

    Google Scholar 

  53. Espandar L, Carlson AN (2013) Lamellar keratoplasty: a literature review. J Ophthalmol 2013:894319. https://doi.org/10.1155/2013/894319

    Article  PubMed  PubMed Central  Google Scholar 

  54. Jimenez-Alfaro I, Perez-Santonja JJ, Gomez Telleria G, Bueno Palacin JL, Puy P (2001) Therapeutic lamellar keratoplasty with an automated microkeratome. J Cataract Refract Surg 27:1161–1165. https://doi.org/10.1016/s0886-3350(00)00889-0

    Article  CAS  PubMed  Google Scholar 

  55. Vajpayee RB, Vasudendra N, Titiyal JS, Tandon R, Sharma N, Sinha R (2006) Automated lamellar therapeutic keratoplasty (ALTK) in the treatment of anterior to mid-stromal corneal pathologies. Acta Ophthalmol Scand 84:771–773. https://doi.org/10.1111/j.1600-0420.2006.00722.x

    Article  PubMed  Google Scholar 

  56. Tan DT, Ang LP (2006) Modified automated lamellar therapeutic keratoplasty for keratoconus: a new technique. Cornea 25:1217–1219. https://doi.org/10.1097/01.ico.0000248388.39767.42

    Article  PubMed  Google Scholar 

  57. Yoo SH, Kymionis GD, Koreishi A, Ide T, Goldman D, Karp CL, O’Brien TP, Culbertson WW, Alfonso EC (2008) Femtosecond laser-assisted sutureless anterior lamellar keratoplasty. Ophthalmology 115:1303–1307. https://doi.org/10.1016/j.ophtha.2007.10.037. (1307 e1301)

    Article  PubMed  Google Scholar 

  58. Shetty R, Nagaraja H, Veluri H, Shivanna Y, Kugar T, Nujits R, Shetty B (2014) Sutureless femtosecond anterior lamellar keratoplasty: a 1-year follow-up study. Indian J Ophthalmol 62:923–926. https://doi.org/10.4103/0301-4738.143928

    Article  PubMed  PubMed Central  Google Scholar 

  59. Shousha MA, Yoo SH, Kymionis GD, Ide T, Feuer W, Karp CL, O’Brien TP, Culbertson WW, Alfonso E (2011) Long-term results of femtosecond laser-assisted sutureless anterior lamellar keratoplasty. Ophthalmology 118:315–323. https://doi.org/10.1016/j.ophtha.2010.06.037

    Article  PubMed  Google Scholar 

  60. Yuen LH, Mehta JS, Shilbayeh R, Lim L, Tan DT (2011) Hemi-automated lamellar keratoplasty (HALK). Br J Ophthalmol 95:1513–1518. https://doi.org/10.1136/bjophthalmol-2011-300195

    Article  PubMed  Google Scholar 

  61. Fuest M, Liu YC, Arundhati A, Li L, Tan D, Mehta JS (2018) Long-term outcomes of hemi-automated lamellar keratoplasty. Clin Exp Ophthalmol 46:1017–1027. https://doi.org/10.1111/ceo.13331

    Article  PubMed  Google Scholar 

  62. Acar BT, Arslan OS, Buttanri IB, Sevim MS, Acar S (2011) Comparing deep anterior lamellar keratoplasty and automated lamellar therapeutic keratoplasty in patients with keratoconus. Jpn J Ophthalmol 55:327–332. https://doi.org/10.1007/s10384-011-0044-0

    Article  PubMed  Google Scholar 

  63. Reda A (2020) Deep anterior lamellar keratoplasty versus penetrating keratoplasty in the treatment of stromal corneal dystrophies. Int Eye Sci 20:1118–1125

    Google Scholar 

  64. Schmidinger G, Seiler TG, Donner R (2022) Femtosecond-laser assisted deep anterior lamellar keratoplasty (F-DALK). In: Armia A, Mazzotta C (eds) Keratoconus. Springer, pp 213–222

    Chapter  Google Scholar 

  65. Chamberlain WD (2019) Femtosecond laser-assisted deep anterior lamellar keratoplasty. Curr Opin Ophthalmol 30:256–263. https://doi.org/10.1097/ICU.0000000000000574

    Article  PubMed  Google Scholar 

  66. Reinhart WJ, Musch DC, Jacobs DS, Lee WB, Kaufman SC, Shtein RM (2011) Deep anterior lamellar keratoplasty as an alternative to penetrating keratoplasty: a report by the American Academy of Ophthalmology. Ophthalmology 118:209–218. https://doi.org/10.1016/j.ophtha.2010.11.002

    Article  PubMed  Google Scholar 

  67. Borderie VM, Sandali O, Bullet J, Gaujoux T, Touzeau O, Laroche L (2012) Long-term results of deep anterior lamellar versus penetrating keratoplasty. Ophthalmology 119:249–255. https://doi.org/10.1016/j.ophtha.2011.07.057

    Article  PubMed  Google Scholar 

  68. Infantes Molina EJ, Celis Sanchez J, Tenias Burilllo JM, Diaz Valle D, Benitez-Del-Castillo JM, Mesa Varona D, Avendano-Cantos E (2019) Deep anterior lamellar keratoplasty versus penetrating keratoplasty in corneas showing a high or low graft rejection risk. Eur J Ophthalmol 29:295–303. https://doi.org/10.1177/1120672118797287

    Article  PubMed  Google Scholar 

  69. Marcon AS, Cohen EJ, Rapuano CJ, Laibson PR (2003) Recurrence of corneal stromal dystrophies after penetrating keratoplasty. Cornea 22:19–21. https://doi.org/10.1097/00003226-200301000-00005

    Article  PubMed  Google Scholar 

  70. Unal M, Arslan OS, Atalay E, Mangan MS, Bilgin AB (2013) Deep anterior lamellar keratoplasty for the treatment of stromal corneal dystrophies. Cornea 32:301–305. https://doi.org/10.1097/ICO.0b013e31825718ca

    Article  PubMed  Google Scholar 

  71. Courtney DG, Atkinson SD, Moore JE, Maurizi E, Serafini C, Pellegrini G, Black GC, Manson FD, Yam GH, Macewen CJ, Allen EH, McLean WH, Moore CB (2014) Development of allele-specific gene-silencing siRNAs for TGFBI Arg124Cys in lattice corneal dystrophy type I. Invest Ophthalmol Vis Sci 55:977–985. https://doi.org/10.1167/iovs.13-13279

    Article  CAS  PubMed  Google Scholar 

  72. Christie KA, Robertson LJ, Conway C, Blighe K, DeDionisio LA, Chao-Shern C, Kowalczyk AM, Marshall J, Turnbull D, Nesbit MA, Moore CBT (2020) Mutation-independent allele-specific editing by CRISPR-Cas9, a novel approach to treat autosomal dominant disease. Mol Ther 28:1846–1857. https://doi.org/10.1016/j.ymthe.2020.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kim EK, Kim S, Maeng YS (2019) Generation of TGFBI knockout ABCG2+/ABCB5+ double-positive limbal epithelial stem cells by CRISPR/Cas9-mediated genome editing. PLoS ONE 14:e0211864. https://doi.org/10.1371/journal.pone.0211864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Christie KA, Courtney DG, DeDionisio LA, Shern CC, De Majumdar S, Mairs LC, Nesbit MA, Moore CBT (2017) Towards personalised allele-specific CRISPR gene editing to treat autosomal dominant disorders. Sci Rep 7:16174. https://doi.org/10.1038/s41598-017-16279-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Weiss JS, Willoughby CE, Abad-Morales V, Turunen JA, Lisch W (2022) Update on the corneal dystrophies-genetic testing and therapy. Cornea 41:1337–1344. https://doi.org/10.1097/ICO.0000000000002857

    Article  PubMed  Google Scholar 

  76. Lee JH, Kim MJ, Ha SW, Kim HK (2016) Autologous platelet-rich plasma eye drops in the treatment of recurrent corneal erosions. Korean J Ophthalmol 30:101–107. https://doi.org/10.3341/kjo.2016.30.2.101

    Article  PubMed  PubMed Central  Google Scholar 

  77. Anitua E, Muruzabal F, Tayebba A, Riestra A, Perez VL, Merayo-Lloves J, Orive G (2015) Autologous serum and plasma rich in growth factors in ophthalmology: preclinical and clinical studies. Acta Ophthalmol 93:e605-614. https://doi.org/10.1111/aos.12710

    Article  PubMed  Google Scholar 

  78. Gupta A, Monroy D, Ji Z, Yoshino K, Huang A, Pflugfelder SC (1996) Transforming growth factor beta-1 and beta-2 in human tear fluid. Curr Eye Res 15:605–614. https://doi.org/10.3109/02713689609008900

    Article  CAS  PubMed  Google Scholar 

  79. Nishida T, Nakamura M, Ofuji K, Reid TW, Mannis MJ, Murphy CJ (1996) Synergistic effects of substance P with insulin-like growth factor-1 on epithelial migration of the cornea. J Cell Physiol 169:159–166. https://doi.org/10.1002/(SICI)1097-4652(199610)169:1%3c159::AID-JCP16%3e3.0.CO;2-8

    Article  CAS  PubMed  Google Scholar 

  80. van Setten GB, Viinikka L, Tervo T, Pesonen K, Tarkkanen A, Perheentupa J (1989) Epidermal growth factor is a constant component of normal human tear fluid. Graefe’s Arch Clin Exp Ophthalmol 227:184–187

    Article  Google Scholar 

  81. Liu L, Hartwig D, Harloff S, Herminghaus P, Wedel T, Geerling G (2005) An optimised protocol for the production of autologous serum eyedrops. Graefes Arch Clin Exp Ophthalmol 243:706–714. https://doi.org/10.1007/s00417-004-1106-5

    Article  CAS  PubMed  Google Scholar 

  82. Tsubota K, Goto E, Fujita H, Ono M, Inoue H, Saito I, Shimmura S (1999) Treatment of dry eye by autologous serum application in Sjogren’s syndrome. Br J Ophthalmol 83:390–395. https://doi.org/10.1136/bjo.83.4.390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kamiya K, Takahashi M, Shoji N (2021) Effect of platelet-rich plasma on corneal epithelial healing after phototherapeutic keratectomy: an intraindividual contralateral randomized sstudy. Biomed Res Int 2021:5752248. https://doi.org/10.1155/2021/5752248

    Article  PubMed  PubMed Central  Google Scholar 

  84. Chakrabarty K, Shetty R, Ghosh A (2018) Corneal cell therapy: with iPSCs, it is no more a far-sight. Stem Cell Res Ther 9:287. https://doi.org/10.1186/s13287-018-1036-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Stenvang M, Schafer NP, Malmos KG, Perez AW, Niembro O, Sormanni P, Basaiawmoit RV, Christiansen G, Andreasen M, Otzen DE (2018) Corneal dystrophy mutations drive pathogenesis by targeting TGFBIp stability and solubility in a latent amyloid-forming domain. J Mol Biol 430:1116–1140. https://doi.org/10.1016/j.jmb.2018.03.001

    Article  CAS  PubMed  Google Scholar 

  86. Nielsen NS, Poulsen ET, Lukassen MV, Chao Shern C, Mogensen EH, Weberskov CE, DeDionisio L, Schauser L, Moore TCB, Otzen DE, Hjortdal J, Enghild JJ (2020) Biochemical mechanisms of aggregation in TGFBI-linked corneal dystrophies. Prog Retin Eye Res 77:100843. https://doi.org/10.1016/j.preteyeres.2020.100843

    Article  CAS  PubMed  Google Scholar 

  87. Stenvang M, Christiansen G, Otzen DE (2016) Epigallocatechin gallate remodels fibrils of lattice corneal dystrophy protein, facilitating proteolytic degradation and preventing formation of membrane-permeabilizing species. Biochemistry 55:2344–2357. https://doi.org/10.1021/acs.biochem.6b00063

    Article  CAS  PubMed  Google Scholar 

  88. Venkatraman A, Murugan E, Lin SJ, Peh GSL, Rajamani L, Mehta JS (2020) Effect of osmolytes on in-vitro aggregation properties of peptides derived from TGFBIp. Sci Rep 10:4011. https://doi.org/10.1038/s41598-020-60944-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Choi SI, Kim BY, Dadakhujaev S, Jester JV, Ryu H, Kim TI, Kim EK (2011) Inhibition of TGFBIp expression by lithium: implications for TGFBI-linked corneal dystrophy therapy. Invest Ophthalmol Vis Sci 52:3293–3300. https://doi.org/10.1167/iovs.10-6405

    Article  CAS  PubMed  Google Scholar 

  90. Nie D, Peng Y, Li M, Liu X, Zhu M, Ye L (2018) Lithium chloride (LiCl) induced autophagy and downregulated expression of transforming growth factor beta-induced protein (TGFBI) in granular corneal dystrophy. Exp Eye Res 173:44–50. https://doi.org/10.1016/j.exer.2018.04.008

    Article  CAS  PubMed  Google Scholar 

  91. Zhu F, Li M, Zhang C, Chen C, Ying F, Nie D (2021) In vivo confocal microscopy qualitative investigation of the relationships between lattice corneal dystrophy deposition and corneal nerves. BMC Ophthalmol 21:449. https://doi.org/10.1186/s12886-021-02149-1

    Article  PubMed  PubMed Central  Google Scholar 

  92. Shetty R, Naidu JR, Nair AP, Vaidya TA, D’Souza S, Matalia H, Deshpande V, Sethu S, Ghosh A, Chakrabarty K (2020) Distinct ocular surface soluble factor profile in human corneal dystrophies. Ocul Surf 18:237–248. https://doi.org/10.1016/j.jtos.2019.11.007

    Article  PubMed  Google Scholar 

  93. Sciriha GG, Seiler TG, Donner R (2022) Identifying and categorizing compounds that reduce corneal transforming growth factor beta induced protein levels: a sco** review. Expert Rev Clin Pharmacol 15:1423–1442. https://doi.org/10.1080/17512433.2022.2142560

    Article  CAS  PubMed  Google Scholar 

  94. Sampaio LP, Hilgert GSL, Shiju TM, Murillo SE, Santhiago MR, Wilson SE (2022) Topical losartan inhibits corneal scarring fibrosis and collagen type IV deposition after Descemet’s membrane-endothelial excision in rabbits. Exp Eye Res 216:108940. https://doi.org/10.1016/j.exer.2022.108940

    Article  CAS  PubMed  Google Scholar 

  95. Sampaio LP, Hilgert GSL, Shiju TM, Santhiago MR, Wilson SE (2022) Topical losartan and corticosteroid additively inhibit corneal stromal myofibroblast generation and scarring fibrosis after alkali burn injury. Transl Vis Sci Technol 11:9. https://doi.org/10.1167/tvst.11.7.9

    Article  PubMed  PubMed Central  Google Scholar 

  96. Salman M, Verma A, Singh VK, Jaffet J, Chaurasia S, Sahel DK, Ramappa M, Singh V (2022) New frontier in the management of corneal dystrophies: basics, development, and challenges in corneal gene therapy and gene editing. Asia Pac J Ophthalmol (Phila) 11:346–359. https://doi.org/10.1097/APO.0000000000000443

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Jayne S. Weiss, MD and Anthony J. Aldave, MD for their critical review and comments during the preparation of this manuscript. As well, we would like to thank Jeffrey Judelson, MD and Walter Lisch, MD for providing images for use in this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The first draft of the article was written by S. G., MD and G. R., MD. The final manuscript has been re-designed, completed, and edited by E. M., MD and G. R., MD. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Ekaterina Milovanova.

Ethics declarations

Ethics approval

This article does not require ethics approval as no studies with human participants, animals, or cell lines were performed by any of the authors.

Consent for publication

Informed consent for publication of the figure was obtained from Dr. Jeffrey Judelson.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milovanova, E., Gomon, S. & Rocha, G. Classic lattice corneal dystrophy: a brief review and summary of treatment modalities. Graefes Arch Clin Exp Ophthalmol 262, 1667–1681 (2024). https://doi.org/10.1007/s00417-023-06297-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-023-06297-6

Keywords

Navigation