Log in

Wide-field swept-source OCT angiography (23 × 20 mm) for detecting retinal neovascularization in eyes with proliferative diabetic retinopathy

  • Retinal Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

Xephilio OCT-S1 can capture single-acquisition 23 × 20-mm wide-field swept-source optical coherence tomography angiography (SS-OCTA) images and high-resolution images using artificial intelligence. We aimed to evaluate the ability of wide-field SS-OCTA in the detection of retinal neovascularizations (NVs) in eyes with proliferative diabetic retinopathy (PDR).

Methods

This retrospective study included 64 eyes of 36 patients (age, 57 ± 10 years; 10 female, 26 male) with PDR. All patients underwent a comprehensive ophthalmological examination, including fluorescein angiography (FA), as well as fovea- and disc-centered 23 × 20-mm OCTA imaging (A-scan/B-scan, 928/807). We compared and examined the number of NV sites identified using conventional methods (merging the findings from biomicroscopy/color fundus photography, FA) and the number of NV sites identified using vitreoretinal interface and superficial retinal slabs of wide-field SS-OCTA images, including the position of NVs (nasal upper, nasal lower, temporal upper, temporal lower, or disc).

Results

We identified 168 NVs (32/40/45/35/16, in the abovementioned order) using the conventional method. Fovea-centered 23 × 20-mm OCTA images revealed 162 (96%) NVs (27/39/45/35/16). This method tended to miss nasal NV. In contrast, disc-centered 23 × 20-mm OCTA images identified nearly all NVs, detecting 166 (99%) NVs (32/40/44/34/16) in total. All NVs could be visualized using two wide-field OCTA images: fovea- and disc-centered.

Conclusion

Wide-field (23 × 20 mm) SS-OCTA—especially disc-centered—using Xephilio OCT-S1 identified nearly all NVs in eyes with PDR, with a single acquisition, thereby demonstrating its potential clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data are available upon request.

References

  1. Duh EJ, Yang HS, Haller JA, De Juan E, Humayun MS, Gehlbach P, Melia M, Pieramici D, Harlan JB, Campochiaro PA, Zack DJ (2004) Vitreous levels of pigment epithelium-derived factor and vascular endothelial growth factor: implications for ocular angiogenesis. Am J Ophthalmol 137:668–674. https://doi.org/10.1016/j.ajo.2003.11.015

    Article  CAS  Google Scholar 

  2. Hirano T, Toriyama Y, Iesato Y, Imai A, Murata T (2018) Changes in plasma vascular endothelial growth factor level after intravitreal injection of bevacizumab, aflibercept, or ranibizumab for diabetic macular edema. Retina 38:1801–1808. https://doi.org/10.1097/IAE.0000000000002004

    Article  CAS  Google Scholar 

  3. Feman SS, Leonard-Martin TC, Semchyshyn TM (1998) The topographic distribution of the first sites of diabetic retinal neovascularization. Am J Ophthalmol 125:704–706. https://doi.org/10.1016/s0002-9394(98)00013-0

    Article  CAS  Google Scholar 

  4. Fan W, Nittala MG, Velaga SB, Hirano T, Wykoff CC, Ip M, Lampen SIR, van Hemert J, Fleming A, Verhoek M, Sadda SR (2019) Distribution of nonperfusion and neovascularization on ultrawide-field fluorescein angiography in proliferative diabetic retinopathy (RECOVERY Study): report 1. Am J Ophthalmol 206:154–160. https://doi.org/10.1016/j.ajo.2019.04.023

    Article  Google Scholar 

  5. Gass JD (1968) A fluorescein angiographic study of macular dysfunction secondary to retinal vascular disease. VI. X-ray irradiation, carotid artery occlusion, collagen vascular disease, and vitritis. Arch Ophthalmol 80:606–617. https://doi.org/10.1001/archopht.1968.00980050608006

    Article  CAS  Google Scholar 

  6. Kwiterovich KA, Maguire MG, Murphy RP, Schachat AP, Bressler NM, Bressler SB, Fine SL (1991) Frequency of adverse systemic reactions after fluorescein angiography Results of a prospective study. Ophthalmol 98:1139–1142. https://doi.org/10.1016/s0161-6420(91)32165-1

    Article  CAS  Google Scholar 

  7. Ishibazawa A, Nagaoka T, Yokota H, Takahashi A, Omae T, Song YS, Takahashi T, Yoshida A (2016) Characteristics of retinal neovascularization in proliferative diabetic retinopathy imaged by optical coherence tomography angiography. Invest Ophthalmol Vis Sci 57:6247–6255. https://doi.org/10.1167/iovs.16-20210

    Article  Google Scholar 

  8. Hirano T, Kitahara J, Toriyama Y, Kasamatsu H, Murata T, Sadda S (2019) Quantifying vascular density and morphology using different swept-source optical coherence tomography angiographic scan patterns in diabetic retinopathy. Br J Ophthalmol 103:216–221. https://doi.org/10.1136/bjophthalmol-2018-311942

    Article  Google Scholar 

  9. Vaz-Pereira S, Morais-Sarmento T, Engelbert M (2021) Update on optical coherence tomography and optical coherence tomography angiography imaging in proliferative diabetic retinopathy. Diagnostics (Basel) 11(10):1869. https://doi.org/10.3390/diagnostics11101869

    Article  Google Scholar 

  10. Sawada O, Ichiyama Y, Obata S, Ito Y, Kakinoki M, Sawada T, Saishin Y, Ohji M (2018) Comparison between wide-angle OCT angiography and ultra-wide-field fluorescein angiography for detecting non-perfusion areas and retinal neovascularization in eyes with diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 256:1275–1280. https://doi.org/10.1007/s00417-018-3992-y

    Article  Google Scholar 

  11. Pichi F, Smith SD, Abboud EB, Neri P, Woodstock E, Hay S, Levine E, Baumal CR (2020) Wide-field optical coherence tomography angiography for the detection of proliferative diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 258(9):1901–1909. https://doi.org/10.1007/s00417-020-04773-x

    Article  Google Scholar 

  12. Hirano T, Hoshiyama K, Hirabayashi K, Wakabayashi M, Toriyama Y, Tokimitsu M, Murata T (2020) Vitreoretinal interface slab in OCT angiography for detecting diabetic retinal neovascularization. Ophthalmol Retina 4:588–594. https://doi.org/10.1016/j.oret.2020.01.004

    Article  Google Scholar 

  13. Borrelli E, Toto L, Viggiano P, Evangelista F, Palmieri M, Mastropasqua R (2020) Widefield topographical analysis of the retinal perfusion and neuroretinal thickness in healthy eyes: a pilot study. Eye (Lond) 34(12):2264–2270. https://doi.org/10.1038/s41433-020-0804-5

    Article  Google Scholar 

  14. Russell JF, Flynn HW Jr, Sridhar J, Townsend JH, Shi Y, Fan KC, Scott NL, Hinkle JW, Lyu C, Gregori G, Russell SR, Rosenfeld PJ (2019) Distribution of diabetic neovascularization on ultra-widefield fluorescein angiography and on simulated widefield OCT angiography. Am J Ophthalmol 207:110–120. https://doi.org/10.1016/j.ajo.2019.05.031

    Article  Google Scholar 

  15. Chiku Y, Hirano T, Takahashi Y, Tuchiya A, Nakamura M, Murata T (2021) Evaluating posterior vitreous detachment by widefield 23-mm swept-source optical coherence tomography imaging in healthy subjects. Sci Rep 11:19754. https://doi.org/10.1038/s41598-021-99372-z

    Article  CAS  Google Scholar 

  16. Wilkinson CP, Ferris FL 3rd, Klein RE, Lee PP, Agardh CD, Davis M, Dills D, Kampik A, Pararajasegaram R, Verdaguer JT, Global Diabetic Retinopathy Project Group (2003) Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmol 110:1677–1682. https://doi.org/10.1016/S0161-6420(03)00475-5

    Article  CAS  Google Scholar 

  17. Lange C, Feltgen N, Junker B, Schulze-Bonsel K, Bach M (2009) Resolving the clinical acuity categories “hand motion” and “counting fingers” using the Freiburg Visual Acuity Test (FrACT). Graefes Arch Clin Exp Ophthalmol 247(1):137–142. https://doi.org/10.1007/s00417-008-0926-0

    Article  CAS  Google Scholar 

  18. Kawai K, Uji A, Murakami T, Kadomoto S, Oritani Y, Dodo Y, Muraoka Y, Akagi T, Miyata M, Tsujikawa A (2021) Image evaluation of artificial intelligence-supported optical coherence tomography angiography imaging using oct-A1 device in diabetic retinopathy. Retina 41:1730–1738. https://doi.org/10.1097/IAE.0000000000003101

    Article  CAS  Google Scholar 

  19. Kadomoto S, Uji A, Muraoka Y, Tsujikawa A (2020) High-contrast scleroconjunctival microvasculature via deep learning denoising. Indian J Ophthalmol 68:2251. https://doi.org/10.4103/ijo.IJO_1079_20

    Article  Google Scholar 

  20. Ishibazawa A, Nagaoka T, Takahashi A, Omae T, Tani T, Sogawa K, Yokota H, Yoshida A (2015) Optical coherence tomography angiography in diabetic retinopathy: a prospective pilot study. Am J Ophthalmol 160:35-44.e1. https://doi.org/10.1016/j.ajo.2015.04.021

    Article  Google Scholar 

  21. Hirano T, Kakihara S, Toriyama Y, Nittala MG, Murata T (2018) Sadda S (2018) Wide-field en face swept-source optical coherence tomography angiography using extended field imaging in diabetic retinopathy. Br J Ophthalmol 102:1199–1203. https://doi.org/10.1136/bjophthalmol-2017-311358

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and data acquisition were done by Ken Hoshiyma, Yoshiaki Takahashi, and Takao Hirano. Data analysis and original draft preparation were performed by Takao Hirano and Toshinori Murata. All the authors contributed to the review and editing. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Takao Hirano.

Ethics declarations

Ethics approval

This study was approved by the ethics committee of the Shinshu University School of Medicine (approval number: 4908) and adhered to the tenets set forth in the Declaration of Helsinki.

Consent to participate

Written informed consent was obtained from all patients before inclusion in this study.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Meeting presentation: the content of this paper was presented at the 7th international symposium held by the Asia Pacific Retinal Imaging Society on Aug 20, 2020.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 19 KB)

Supplementary file2 (DOCX 18 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirano, T., Hoshiyama, K., Takahashi, Y. et al. Wide-field swept-source OCT angiography (23 × 20 mm) for detecting retinal neovascularization in eyes with proliferative diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 261, 339–344 (2023). https://doi.org/10.1007/s00417-022-05878-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-022-05878-1

Keywords

Navigation