Log in

Choriocapillaris flow loss in center-involving retinitis pigmentosa: a quantitative optical coherence tomography angiography study using a novel classification system

  • Retinal Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

Choriocapillaris insufficiency may play a role in centripetal retinitis pigmentosa (RP) progression involving the fovea. However, the relationship between choriocapillaris integrity and foveal damage in RP is unclear. We examined the relationship between choriocapillaris flow and the presence of foveal photoreceptor involvement in RP.

Methods

We categorized the severity of central involvement in RP by the occurrence of foveal ellipsoid zone (EZ) disruption: present (severe RP) or absent (mild RP). Using optical coherence tomography angiography (OCTA, AngioVue, Optovue) in cases and unaffected age-matched controls, we compared vessel density (VD) between the groups using the generalized linear mixed model, controlling for age, gender, and scan quality.

Results

Fifty-seven eyes (20 severe RP, 18 mild RP, and 19 controls) were included. Foveal and parafoveal mean outer retinal thickness (µm) were lower in severe RP (fovea: 101.3 ± 14.5; parafovea: 68.4 ± 11.7) than controls (fovea: 161.2 ± 8.9; parafovea: 142.1 ± 11.8; p ≤ 0.001) and mild RP (fovea: 162.0 ± 14.7; parafovea: 116.8 ± 29.4; p ≤ 0.0001). Foveal choriocapillaris VD (%) was lower in severe RP (56.7 ± 6.8) than controls (69.9 ± 4.6; p = 0.008) and mild RP (65.3 ± 5.3; p = 0.01). The parafoveal choriocapillaris VD was lower in severe RP than controls (64.4 ± 5.9 vs. 68.3 ± 4.1; p = 0.04) but no different than in mild RP (p = 0.4).

Conclusion

Choriocapillaris flow loss was associated with fovea-involving photoreceptor damage in RP. Further research is warranted to validate this putative association and clarify causation. Choriocapillaris imaging using OCTA may provide information to supplement structural OCT findings when evaluating subjects with RP in neuroprotective or regenerative clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hartong DT, Berson EL, Dryja TP (2006) Retinitis pigmentosa. Lancet 368(9549):1795–1809. https://doi.org/10.1016/S0140-6736(06)69740-7

    Article  CAS  PubMed  Google Scholar 

  2. Zhang Q (2016) Retinitis pigmentosa: progress and perspective. Asia Pac J Ophthalmol (Phila) 5(4):265–271. https://doi.org/10.1097/APO.0000000000000227

    Article  CAS  Google Scholar 

  3. Henkind P, Gartner S (1983) The relationship between retinal pigment epithelium and the choriocapillaries. Trans Ophthalmol Soc UK 103(Pt 4):444–447

    PubMed  Google Scholar 

  4. Blaauwgeers HG, Holtkamp GM, Rutten H, Witmer AN, Koolwijk P, Partanen TA, Alitalo K, Kroon ME, Kijlstra A, van Hinsbergh VW, Schlingemann RO (1999) Polarized vascular endothelial growth factor secretion by human retinal pigment epithelium and localization of vascular endothelial growth factor receptors on the inner choriocapillaris. Evidence for a trophic paracrine relation. Am J Pathol 155(2):421–428. https://doi.org/10.1016/S0002-9440(10)65138-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Guduru A, Al-Sheikh M, Gupta A, Ali H, Jalali S, Chhablani J (2018) Quantitative assessment of the choriocapillaris in patients with retinitis pigmentosa and in healthy individuals using OCT angiography. Ophthalmic Surg Lasers Imaging Retina 49(10):e122–e128. https://doi.org/10.3928/23258160-20181002-14

    Article  PubMed  Google Scholar 

  6. Korte GE, Reppucci V, Henkind P (1984) RPE destruction causes choriocapillary atrophy. Invest Ophthalmol Vis Sci 25(10):1135–1145

    CAS  PubMed  Google Scholar 

  7. Dhoot DS, Huo S, Yuan A, Xu D, Srivistava S, Ehlers JP, Traboulsi E, Kaiser PK (2013) Evaluation of choroidal thickness in retinitis pigmentosa using enhanced depth imaging optical coherence tomography. Br J Ophthalmol 97(1):66–69

    Article  Google Scholar 

  8. Cellini M, Strobbe E, Gizzi C, Campos EC (2010) ET-1 plasma levels and ocular blood flow in retinitis pigmentosa. Can J Physiol Pharmacol 88(6):630–635. https://doi.org/10.1139/Y10-036

    Article  CAS  PubMed  Google Scholar 

  9. Miyata M, Oishi A, Hasegawa T, Oishi M, Numa S, Otsuka Y, Uji A, Kadomoto S, Hata M, Ikeda HO, Tsujikawa A (2019) Concentric choriocapillaris flow deficits in retinitis pigmentosa detected using wide-angle swept-source optical coherence tomography angiography. Invest Ophthal Vis Sci 60(4):1044–1049

    Article  Google Scholar 

  10. Rezaei KA, Zhang Q, Chen CL, Chao J, Wang RK (2017) Retinal and choroidal vascular features in patients with retinitis pigmentosa imaged by OCT based microangiography. Graefes Arch Clin Exp Ophthalmol 255(7):1287–1295. https://doi.org/10.1007/s00417-017-3633-x

    Article  PubMed  Google Scholar 

  11. Mastropasqua R, D’Aloisio R, De Nicola C, Ferro G, Senatore A, Libertini D, Di Marzio G, Di Nicola M, Di Martino G, Di Antonio L, Toto L (2020) Widefield swept source OCTA in retinitis pigmentosa. Diagnostics (Basel) 10(1):50. https://doi.org/10.3390/diagnostics10010050

    Article  Google Scholar 

  12. Liu R, Lu J, Liu Q, Wang Y, Cao D, Wang J, Wang X, Pan J, Ma L, ** C, Sadda S, Luo Y, Lu L (2019) Effect of choroidal vessel density on the ellipsoid zone and visual function in retinitis pigmentosa using optical coherence tomography angiography. Invest Ophthal Vis Sci 1(60):4328–4335

    Article  Google Scholar 

  13. Hanyuda N, Akiyama H, Shimoda Y, Mukai R, Sano M, Shinohara Y, Kishi S (2017) Different filling patterns of the choriocapillaris in fluorescein and indocyanine green angiography in primate eyes under elevated intraocular pressure. Invest Ophthalmol Vis Sci 58(13):5856–5861. https://doi.org/10.1167/iovs.17-22223

    Article  CAS  PubMed  Google Scholar 

  14. Jia Y, Bailey ST, Hwang TS, McClintic SM, Gao SS, Pennesi ME, Flaxel CJ, Lauer AK, Wilson DJ, Hornegger J, Fujimoto JG, Huang D (2015) Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye. Proc Natl Acad Sci U S A 112(18):E2395-2402. https://doi.org/10.1073/pnas.1500185112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gao SS, Jia Y, Zhang M, Su JP, Liu G, Hwang TS, Bailey ST, Huang D (2016) Optical coherence tomography angiography. Invest Ophthal Vis Sci 57(9):OCT27–OCT36

    Article  Google Scholar 

  16. McCulloch DL, Marmor MF, Brigell MG, Hamilton R, Holder GE, Tzekov R, Bach M (2015) ISCEV Standard for full-field clinical electroretinography. Doc Ophthalmol 130(1):1–12

    Article  Google Scholar 

  17. Birch DG, Locke KG, Wen Y, Locke KI, Hoffman DR, Hood DC (2013) Spectral-domain optical coherence tomography measures of outer segment layer progression in patients with X-linked retinitis pigmentosa. JAMA Ophthalmol 131(9):1143–1150. https://doi.org/10.1001/jamaophthalmol.2013.4160

    Article  PubMed  PubMed Central  Google Scholar 

  18. Team RC (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing,. https://www.R-project.org/. Accessed 24 Mar 2019

  19. Pinheiro J, Bates D, DebRoy S, Sarkar D, Team RC (2018) nlme: linear and nonlinear mixed effects models. R package version 3.1–137. https://CRAN.R-project.org/package=nlme. Accessed 24 Mar 2019

  20. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate-a practical and powerful approach to multiple testing. J R Stat Soc B 57(1):289–300

    Google Scholar 

  21. Maguire AM, Simonelli F, Pierce EA, Pugh EN Jr, Mingozzi F, Bennicelli J, Banfi S, Marshall KA, Testa F, Surace EM, Rossi S, Lyubarsky A, Arruda VR, Konkle B, Stone E, Sun J, Jacobs J, Dell’Osso L, Hertle R, Ma JX, Redmond TM, Zhu X, Hauck B, Zelenaia O, Shindler KS, Maguire MG, Wright JF, Volpe NJ, McDonnell JW, Auricchio A, High KA, Bennett J (2008) Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med 358(21):2240–2248. https://doi.org/10.1056/NEJMoa0802315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bainbridge JW, Smith AJ, Barker SS, Robbie S, Henderson R, Balaggan K, Viswanathan A, Holder GE, Stockman A, Tyler N, Petersen-Jones S, Bhattacharya SS, Thrasher AJ, Fitzke FW, Carter BJ, Rubin GS, Moore AT, Ali RR (2008) Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med 358(21):2231–2239. https://doi.org/10.1056/NEJMoa0802268

    Article  CAS  PubMed  Google Scholar 

  23. Bennett J, Wellman J, Marshall KA, McCague S, Ashtari M, DiStefano-Pappas J, Elci OU, Chung DC, Sun J, Wright JF, Cross DR, Aravand P, Cyckowski LL, Bennicelli JL, Mingozzi F, Auricchio A, Pierce EA, Ruggiero J, Leroy BP, Simonelli F, High KA, Maguire AM (2016) Safety and durability of effect of contralateral-eye administration of AAV2 gene therapy in patients with childhood-onset blindness caused by RPE65 mutations: a follow-on phase 1 trial. Lancet 388(10045):661–672. https://doi.org/10.1016/S0140-6736(16)30371-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Russell S, Bennett J, Wellman JA, Chung DC, Yu ZF, Tillman A, Wittes J, Pappas J, Elci O, McCague S, Cross D, Marshall KA, Walshire J, Kehoe TL, Reichert H, Davis M, Raffini L, George LA, Hudson FP, Dingfield L, Zhu X, Haller JA, Sohn EH, Mahajan VB, Pfeifer W, Weckmann M, Johnson C, Gewaily D, Drack A, Stone E, Wachtel K, Simonelli F, Leroy BP, Wright JF, High KA, Maguire AM (2017) Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet 390(10097):849–860. https://doi.org/10.1016/S0140-6736(17)31868-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Takahashi VKL, Takiuti JT, Jauregui R, Tsang SH (2018) Gene therapy in inherited retinal degenerative diseases, a review. Ophthalmic Genet 39(5):560–568. https://doi.org/10.1080/13816810.2018.1495745

    Article  CAS  PubMed  Google Scholar 

  26. Maeda A, Mandai M, Takahashi M (2019) Gene and induced pluripotent stem cell therapy for retinal diseases. Annu Rev Genomics Hum Genet. https://doi.org/10.1146/annurev-genom-083118-015043

    Article  PubMed  Google Scholar 

  27. Iraha S, Tu HY, Yamasaki S, Kagawa T, Goto M, Takahashi R, Watanabe T, Sugita S, Yonemura S, Sunagawa GA, Matsuyama T, Fujii M, Kuwahara A, Kishino A, Koide N, Eiraku M, Tanihara H, Takahashi M, Mandai M (2018) Establishment of immunodeficient retinal degeneration model mice and functional maturation of human ESC-derived retinal sheets after transplantation. Stem Cell Reports 10(3):1059–1074. https://doi.org/10.1016/j.stemcr.2018.01.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shirai H, Mandai M, Matsushita K, Kuwahara A, Yonemura S, Nakano T, Assawachananont J, Kimura T, Saito K, Terasaki H, Eiraku M, Sasai Y, Takahashi M (2016) Transplantation of human embryonic stem cell-derived retinal tissue in two primate models of retinal degeneration. Proc Natl Acad Sci U S A 113(1):E81-90. https://doi.org/10.1073/pnas.1512590113

    Article  CAS  PubMed  Google Scholar 

  29. Pearson RA, Barber AC, Rizzi M, Hippert C, Xue T, West EL, Duran Y, Smith AJ, Chuang JZ, Azam SA, Luhmann UFO, Benucci A, Sung CH, Bainbridge JW, Carandini M, Yau KW, Sowden JC, Ali RR (2012) Restoration of vision after transplantation of photoreceptors. Nature 485(7396):99–103. https://doi.org/10.1038/nature10997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Singh MS, Charbel Issa P, Butler R, Martin C, Lipinski DM, Sekaran S, Barnard AR, MacLaren RE (2013) Reversal of end-stage retinal degeneration and restoration of visual function by photoreceptor transplantation. Proc Natl Acad Sci U S A 110(3):1101–1106. https://doi.org/10.1073/pnas.1119416110

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kruczek K, Gonzalez-Cordero A, Goh D, Naeem A, Jonikas M, Blackford SJI, Kloc M, Duran Y, Georgiadis A, Sampson RD, Maswood RN, Smith AJ, Decembrini S, Arsenijevic Y, Sowden JC, Pearson RA, West EL, Ali RR (2017) Differentiation and transplantation of embryonic stem cell-derived cone photoreceptors into a mouse model of end-stage retinal degeneration. Stem Cell Reports 8(6):1659–1674. https://doi.org/10.1016/j.stemcr.2017.04.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Santos-Ferreira T, Postel K, Stutzki H, Kurth T, Zeck G, Ader M (2015) Daylight vision repair by cell transplantation. Stem Cells 33(1):79–90. https://doi.org/10.1002/stem.1824

    Article  CAS  PubMed  Google Scholar 

  33. Battaglia Parodi M, Cicinelli MV, Rabiolo A, Pierro L, Gagliardi M, Bolognesi G, Bandello F (2017) Vessel density analysis in patients with retinitis pigmentosa by means of optical coherence tomography angiography. Br J Ophthalmol 101(4):428–432. https://doi.org/10.1136/bjophthalmol-2016-308925

    Article  PubMed  Google Scholar 

  34. Sugahara M, Miyata M, Ishihara K, Gotoh N, Morooka S, Ogino K, Hasegawa T, Hirashima T, Yoshikawa M, Hata M, Muraoka Y, Ooto S, Yamashiro K, Yoshimura N (2017) Optical coherence tomography angiography to estimate retinal blood flow in eyes with retinitis pigmentosa. Sci Rep 7:46396. https://doi.org/10.1038/srep46396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li XX, Wu W, Zhou H, Deng JJ, Zhao MY, Qian TW, Yan C, Xu X, Yu SQ (2018) A quantitative comparison of five optical coherence tomography angiography systems in clinical performance. Int J Ophthalmol 11(11):1784–1795. https://doi.org/10.18240/ijo.2018.11.09

    Article  PubMed  PubMed Central  Google Scholar 

  36. Alnawaiseh M, Schubert F, Heiduschka P, Eter N (2019) Optical coherence tomography angiography in patients with retinitis pigmentosa. Retina 39(1):210–217. https://doi.org/10.1097/IAE.000000000000190

    Article  PubMed  Google Scholar 

  37. Inooka D, Ueno S, Kominami T, Sayo A, Okado S, Ito Y, Terasaki H (2018) Quantification of macular microvascular changes in patients with retinitis pigmentosa using optical coherence tomography angiography. Invest Ophthalmol Vis Sci 59(1):433–438. https://doi.org/10.1167/iovs.17-23202

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by a Foundation Fighting Blindness Career Development Award CD-RM-0918–0749-JHU (MSS), the Hartwell Foundation, the Shulsky Foundation, the Joseph Albert Hekimian Fund, Research to Prevent Blindness (unrestricted grant to the Wilmer Eye Institute), and the Wilmer Biostatistics Core Grant EY01765. The sponsors or funding organizations had no role in the design or conduct of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mandeep S. Singh.

Ethics declarations

Ethics approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of Johns Hopkins University and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.

Informed consent

Informed consent was waived given the retrospective nature of the study.

Conflict of interest

The authors declare no competing interests.

Disclaimer

Its contents are solely the responsibility of the authors and do not necessarily represent the official view of funders.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ong, S.S., Liu, T.Y.A., Li, X. et al. Choriocapillaris flow loss in center-involving retinitis pigmentosa: a quantitative optical coherence tomography angiography study using a novel classification system. Graefes Arch Clin Exp Ophthalmol 259, 3235–3242 (2021). https://doi.org/10.1007/s00417-021-05223-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-021-05223-y

Keywords

Navigation