Log in

Loss of the “swallow tail sign” on susceptibility-weighted imaging in the diagnosis of dementia with Lewy bodies: a systematic review and meta-analysis

  • Review
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Introduction

Loss of dorsolateral nigral hyperintensity (DNH) on iron-sensitive brain MRI is useful for Parkinson’s disease detection. DNH loss could also be of diagnostic value in dementia with Lewy bodies (DLB), an a-synuclein-related pathology. We aim to quantitatively synthesize evidence, investigating the role of MRI, a first-line imaging modality, in early DLB detection and differentiation from other dementias.

Methods

Our study was conducted according to the PRISMA statement. MEDLINE, Scopus, Web of Science, and Cochrane Library were searched using the terms like “dementia with Lewy bodies”, “dorsolateral nigral hyperintensity”, and “MRI”. Only English-written peer-reviewed diagnostic accuracy studies were included. We used QUADAS-2 for quality assessment.

Results

Our search yielded 363 search results. Three studies were eligible, all with satisfying, high quality. The total population of 227 patients included 63 with DLB and 164 with other diseases (Alzheimer disease, frontotemporal dementia, mild cognitive impairment). Using a univariate random-effects logistic regression model, our meta-analysis resulted in pooled sensitivity, specificity and DOR of 0.82 [0.62; 0.92], 0.79 [0.70; 0.86] and 16.26 ([3.3276; 79.4702], p = 0.0006), respectively, for scans with mixed field strength (1.5 and 3 T). Subgroup analysis of 3 T scans showed pooled sensitivity, specificity and DOR of 0.82 [0.61; 0.93], 0.82 [0.72; 0.89] and 18.36 ([4.24; 79.46], p < 0.0001), respectively.

Discussion

DNH loss on iron-sensitive MRI might comprise a supportive biomarker for DLB detection, that could augment the value of the DLB diagnostic criteria. Further evaluation using standardized protocols is needed, as well as direct comparison to other supportive and indicative biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable.

References

  1. McKeith IG et al (2017) Diagnosis and management of dementia with Lewy bodies: fourth consensus report of the DLB Consortium. Neurology 89(1):88. https://doi.org/10.1212/WNL.0000000000004058

    Article  PubMed  PubMed Central  Google Scholar 

  2. Haller S et al (2013) Neuroimaging of dementia in 2013: what radiologists need to know. Eur Radiol 23(12):3393–3404. https://doi.org/10.1007/S00330-013-2957-0

    Article  PubMed  Google Scholar 

  3. McKeith I (2004) Dementia with Lewy bodies. Dialogues Clin Neurosci 6(3):333–341. https://doi.org/10.31887/DCNS.2004.6.3/IMCKEITH

    Article  PubMed  PubMed Central  Google Scholar 

  4. Outeiro TF et al (2019) Dementia with Lewy bodies: an update and outlook. Mol Neurodegener. https://doi.org/10.1186/S13024-019-0306-8

    Article  PubMed  PubMed Central  Google Scholar 

  5. Blazejewska AI et al (2013) Visualization of nigrosome 1 and its loss in PD: pathoanatomical correlation and in vivo 7 T MRI. Neurology 81(6):534–540. https://doi.org/10.1212/WNL.0B013E31829E6FD2

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chau MT, Todd G, Wilcox R, Agzarian M, Bezak E (2020) Diagnostic accuracy of the appearance of Nigrosome-1 on magnetic resonance imaging in Parkinson’s disease: a systematic review and meta-analysis. Parkinson Relat Disord 78:12–20. https://doi.org/10.1016/J.PARKRELDIS.2020.07.002

    Article  Google Scholar 

  7. ** L et al (2019) Combined visualization of nigrosome-1 and neuromelanin in the substantia Nigra using 3T MRI for the differential diagnosis of essential tremor and de novo Parkinson’s disease. Front Neurol 10(Feb):100. https://doi.org/10.3389/FNEUR.2019.00100

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kim EY, Sung YH, Shin HG, Noh Y, Nam Y, Lee J (2018) Diagnosis of early-stage idiopathic Parkinson’s disease using high-resolution quantitative susceptibility map** combined with histogram analysis in the substantia Nigra at 3 T. J Clin Neurol 14(1):90. https://doi.org/10.3988/JCN.2018.14.1.90

    Article  PubMed  Google Scholar 

  9. Stezin A et al (2018) Clinical utility of visualisation of nigrosome-1 in patients with Parkinson’s disease. Eur Radiol 28(2):718–726. https://doi.org/10.1007/S00330-017-4950-5

    Article  PubMed  Google Scholar 

  10. Damier P, Hirsch EC, Agid Y, Graybiel AM (1999) The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain 122(Pt 8):1437–1448. https://doi.org/10.1093/BRAIN/122.8.1437

    Article  PubMed  Google Scholar 

  11. Gao P et al (2015) Visualization of nigrosomes-1 in 3T MR susceptibility weighted imaging and its absence in diagnosing Parkinson’s disease. Eur Rev Med Pharmacol Sci 19(23):4603–4609

    CAS  PubMed  Google Scholar 

  12. Kim JM et al (2016) Loss of substantia nigra hyperintensity on 7 Tesla MRI of Parkinson’s disease, multiple system atrophy, and progressive supranuclear palsy. Parkinson Relat Disord 26:47–54. https://doi.org/10.1016/J.PARKRELDIS.2016.01.023

    Article  CAS  Google Scholar 

  13. Bae YJ et al (2016) Loss of nigral hyperintensity on 3 tesla MRI of Parkinsonism: comparison with (123) I-FP-CIT SPECT. Mov Disord 31(5):684–692. https://doi.org/10.1002/MDS.26584

    Article  CAS  PubMed  Google Scholar 

  14. Kwon DH et al (2012) Seven-Tesla magnetic resonance images of the substantia Nigra in Parkinson disease. Ann Neurol 71(2):267–277. https://doi.org/10.1002/ANA.22592

    Article  PubMed  Google Scholar 

  15. Noh Y, Sung YH, Lee J, Kim EY (2015) Nigrosome 1 detection at 3T MRI for the diagnosis of early-stage idiopathic Parkinson disease: assessment of diagnostic accuracy and agreement on imaging asymmetry and clinical laterality. AJNR Am J Neuroradiol 36(11):2010–2016. https://doi.org/10.3174/AJNR.A4412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pyatigorskaya N et al (2018) Comparative study of MRI biomarkers in the substantia Nigra to discriminate idiopathic Parkinson disease. AJNR Am J Neuroradiol 39(8):1460–1467. https://doi.org/10.3174/AJNR.A5702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Moher D et al (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. https://doi.org/10.1371/JOURNAL.PMED.1000097

    Article  PubMed  PubMed Central  Google Scholar 

  18. Page MJ et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. https://doi.org/10.1136/BMJ.N71

    Article  PubMed  PubMed Central  Google Scholar 

  19. Clark J, Glasziou P, Del Mar C, Bannach-Brown A, Stehlik P, Scott AM (2020) A full systematic review was completed in 2 weeks using automation tools: a case study. J Clin Epidemiol 121:81–90. https://doi.org/10.1016/J.JCLINEPI.2020.01.008

    Article  PubMed  Google Scholar 

  20. Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A (2016) Rayyan—a web and mobile app for systematic reviews. Syst Rev 5(1):1–10. https://doi.org/10.1186/S13643-016-0384-4/FIGURES/6

    Article  Google Scholar 

  21. Haddaway NR, Page MJ, Pritchard CC, McGuinness LA (2022) PRISMA2020: an R package and Shiny app for producing PRISMA 2020-compliant flow diagrams, with interactivity for optimised digital transparency and open synthesis. Campbell Syst Rev 18(2):e1230. https://doi.org/10.1002/CL2.1230

    Article  PubMed  PubMed Central  Google Scholar 

  22. Whiting PF et al (2011) QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155(8):529–536. https://doi.org/10.7326/0003-4819-155-8-201110180-00009

    Article  PubMed  Google Scholar 

  23. Takwoingi Y, Guo B, Riley RD, Deeks JJ (2017) Performance of methods for meta-analysis of diagnostic test accuracy with few studies or sparse data. Stat Methods Med Res 26(4):1896–1911. https://doi.org/10.1177/0962280215592269

    Article  PubMed  Google Scholar 

  24. Kuznetsova A, Brockhoff PB, Christensen RHB (2017) lmerTest package: tests in linear mixed effects models. J Stat Softw 82(13):1–26. https://doi.org/10.18637/JSS.V082.I13

    Article  Google Scholar 

  25. Kamagata K et al (2017) Diagnostic imaging of dementia with Lewy bodies by susceptibility-weighted imaging of nigrosomes versus striatal dopamine transporter single-photon emission computed tomography: a retrospective observational study. Neuroradiology 59(1):89–98. https://doi.org/10.1007/S00234-016-1773-Z

    Article  PubMed  Google Scholar 

  26. Shams S et al (2017) MRI of the swallow tail sign: A useful marker in the diagnosis of Lewy body dementia? AJNR Am J Neuroradiol 38(9):1737–1741. https://doi.org/10.3174/AJNR.A5274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rizzo G et al (2019) Loss of swallow tail sign on susceptibility-weighted imaging in dementia with Lewy bodies. J Alzheimers Dis 67(1):61–65. https://doi.org/10.3233/JAD-180687

    Article  PubMed  Google Scholar 

  28. McKeith IG et al (2005) Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology 65(12):1863–1872. https://doi.org/10.1212/01.WNL.0000187889.17253.B1

    Article  CAS  PubMed  Google Scholar 

  29. Cronin P, Kelly AM, Altaee D, Foerster B, Petrou M, Dwamena BA (2018) How to perform a systematic review and meta-analysis of diagnostic imaging studies. Acad Radiol 25(5):573–593. https://doi.org/10.1016/J.ACRA.2017.12.007

    Article  PubMed  Google Scholar 

  30. Reitsma JB, Glas AS, Rutjes AWS, Scholten RJPM, Bossuyt PM, Zwinderman AH (2005) Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews. J Clin Epidemiol 58(10):982–990. https://doi.org/10.1016/J.JCLINEPI.2005.02.022

    Article  PubMed  Google Scholar 

  31. De Pietro Franco Zorzenon C, Almeida Antônio Bienes GH, Duarte Alves E, Tobaru Tibana LA, Carrete Júnior H, Ballalai Ferraz H (2021) Magnetic resonance imaging evaluation of nigrosome 1 and neuromelanin can assist Parkinson’s disease diagnosis, but requires an expert neuroradiologist. Parkinson Relat Disord 83:8–12. https://doi.org/10.1016/J.PARKRELDIS.2020.12.006

  32. Cheng Z et al (2020) Imaging the Nigrosome 1 in the substantia Nigra using susceptibility weighted imaging and quantitative susceptibility map**: an application to Parkinson’s disease. Neuroimage Clin. https://doi.org/10.1016/J.NICL.2019.102103

    Article  PubMed  PubMed Central  Google Scholar 

  33. Burton EJ et al (2009) Medial temporal lobe atrophy on MRI differentiates Alzheimer’s disease from dementia with Lewy bodies and vascular cognitive impairment: a prospective study with pathological verification of diagnosis. Brain 132(Pt 1):195–203. https://doi.org/10.1093/BRAIN/AWN298

    Article  CAS  PubMed  Google Scholar 

  34. Harper L et al (2016) MRI visual rating scales in the diagnosis of dementia: evaluation in 184 post-mortem confirmed cases. Brain 139(Pt 4):1211–1225. https://doi.org/10.1093/BRAIN/AWW005

    Article  PubMed  PubMed Central  Google Scholar 

  35. Nedelska Z et al (2015) Pattern of brain atrophy rates in autopsy-confirmed dementia with Lewy bodies. Neurobiol Aging 36(1):452. https://doi.org/10.1016/J.NEUROBIOLAGING.2014.07.005

    Article  PubMed  Google Scholar 

  36. Lobotesis K et al (2001) Occipital hypoperfusion on SPECT in dementia with Lewy bodies but not AD. Neurology 56(5):643–649. https://doi.org/10.1212/WNL.56.5.643

    Article  CAS  PubMed  Google Scholar 

  37. O’Brien JT et al (2014) 18F-FDG PET and perfusion SPECT in the diagnosis of Alzheimer and Lewy body dementias. J Nucl Med 55(12):1959–1965. https://doi.org/10.2967/JNUMED.114.143347

    Article  PubMed  Google Scholar 

  38. De Marzi R et al (2016) Loss of dorsolateral nigral hyperintensity on 3.0 tesla susceptibility-weighted imaging in idiopathic rapid eye movement sleep behavior disorder. Ann Neurol 79(6):1026–1030. https://doi.org/10.1002/ANA.24646

    Article  PubMed  Google Scholar 

  39. Bae YJ et al (2018) Loss of substantia nigra hyperintensity at 3.0-T MR imaging in idiopathic REM sleep behavior disorder: comparison with 123I-FP-CIT SPECT. Radiology 287(1):285–293. https://doi.org/10.1148/RADIOL.2017162486

    Article  PubMed  Google Scholar 

Download references

Funding

The publication of the article in OA mode was financially supported by HEAL-Link.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: VST, KE; Literature review: VST, GK, DDC, TM; Data analysis: VST, GK; Writing—original draft preparation: VST, KE, PP, CP; Writing—review and editing: VST, TM, MA, SK; Supervision: SK.

Corresponding author

Correspondence to Vasilis-Spyridon Tseriotis.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 15 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tseriotis, VS., Mavridis, T., Eleftheriadou, K. et al. Loss of the “swallow tail sign” on susceptibility-weighted imaging in the diagnosis of dementia with Lewy bodies: a systematic review and meta-analysis. J Neurol (2024). https://doi.org/10.1007/s00415-024-12381-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00415-024-12381-6

Keywords

Navigation