Log in

Functional and structural brain MRI changes associated with cognitive worsening in multiple sclerosis: a 3-year longitudinal study

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Background

Heterogeneous processes may contribute to cognitive impairment in multiple sclerosis (MS).

Objective

To apply a longitudinal multiparametric MRI approach to identify mechanisms associated with cognitive worsening in MS patients.

Methods

3 T brain functional and structural MRI scans were acquired at baseline and after a median follow-up of 3.4 years in 35 MS patients and 22 healthy controls (HC). Associations between cognitive worsening (reliable change index score < − 1.25 at the Rao’s battery) and longitudinal changes in regional T2-hyperintense white matter (WM) lesions, diffusion tensor microstructural WM damage, gray matter (GM) atrophy and resting state (RS) functional connectivity (FC) were explored.

Results

At follow-up, HC showed no clusters of significant microstructural WM damage progression, GM atrophy or changes in RS FC. At follow-up, 10 MS patients (29%) showed cognitive worsening. Compared to cognitively stable, cognitively worsened MS patients showed more severe GM atrophy of the right anterior cingulate cortex and bilateral supplementary motor area (p < 0.001). Cognitively worsened vs cognitively stable MS patients showed also decreased RS FC in the right hippocampus of the right working memory network and in the right insula of the default mode network. Increased RS FC in the left insula of the executive control network was found in the opposite comparison (p < 0.001). No significant regional accumulation of focal WM lesions nor microstructural WM abnormalities occurred in both patients’ groups.

Conclusions

GM atrophy progression in cognitively relevant brain regions combined with functional impoverishment in networks involved in cognitive functions may represent the substrates underlying cognitive worsening in MS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The dataset used and analyzed during the current study is available from the corresponding author on reasonable request.

References

  1. Chiaravalloti ND, DeLuca J (2008) Cognitive impairment in multiple sclerosis. Lancet Neurol 7(12):1139–1151

    Article  PubMed  Google Scholar 

  2. Rocca MA et al (2015) Clinical and imaging assessment of cognitive dysfunction in multiple sclerosis. Lancet Neurol 14(3):302–317

    Article  PubMed  Google Scholar 

  3. Rao SM et al (1991) Cognitive dysfunction in multiple sclerosis. II. Impact on employment and social functioning. Neurology 41(5):692–696

    Article  CAS  PubMed  Google Scholar 

  4. Glanz BI et al (2007) Cognitive dysfunction in patients with clinically isolated syndromes or newly diagnosed multiple sclerosis. Mult Scler 13(8):1004–1010

    Article  CAS  PubMed  Google Scholar 

  5. Menascu S et al (2019) Assessing cognitive performance in radiologically isolated syndrome. Mult Scler Relat Disord 32:70–73

    Article  PubMed  Google Scholar 

  6. Amato MP et al (2010) Relevance of cognitive deterioration in early relapsing-remitting MS: a 3-year follow-up study. Mult Scler 16(12):1474–1482

    Article  PubMed  Google Scholar 

  7. Damasceno A et al (2020) Cognitive trajectories in relapsing-remitting multiple sclerosis: a longitudinal 6-year study. Mult Scler 26(13):1740–1751

    Article  PubMed  Google Scholar 

  8. Preziosa P et al (2016) Structural MRI correlates of cognitive impairment in patients with multiple sclerosis: a multicenter study. Hum Brain Mapp 37(4):1627–1644

    Article  PubMed  PubMed Central  Google Scholar 

  9. Eijlers AJC et al (2018) Determinants of cognitive impairment in patients with multiple sclerosis with and without atrophy. Radiology 288(2):544–551

    Article  PubMed  Google Scholar 

  10. Arnett PA et al (1994) Relationship between frontal lobe lesions and Wisconsin Card Sorting Test performance in patients with multiple sclerosis. Neurology 44(3 Pt 1):420–425

    Article  CAS  PubMed  Google Scholar 

  11. Sepulcre J et al (2009) Brain pathways of verbal working memory: a lesion-function correlation study. Neuroimage 47(2):773–778

    Article  PubMed  Google Scholar 

  12. Kincses ZT et al (2011) Lesion probability map** to explain clinical deficits and cognitive performance in multiple sclerosis. Mult Scler 17(6):681–689

    Article  CAS  PubMed  Google Scholar 

  13. Mesaros S et al (2012) Diffusion tensor MRI tractography and cognitive impairment in multiple sclerosis. Neurology 78(13):969–975

    Article  CAS  PubMed  Google Scholar 

  14. Dineen RA et al (2009) Disconnection as a mechanism for cognitive dysfunction in multiple sclerosis. Brain 132(Pt 1):239–249

    Article  CAS  PubMed  Google Scholar 

  15. Hulst HE et al (2013) Cognitive impairment in MS: impact of white matter integrity, gray matter volume, and lesions. Neurology 80(11):1025–1032

    Article  CAS  PubMed  Google Scholar 

  16. Schoonheim MM et al (2015) Thalamus structure and function determine severity of cognitive impairment in multiple sclerosis. Neurology 84(8):776–783

    Article  PubMed  Google Scholar 

  17. Eijlers AJC et al (2019) Cortical atrophy accelerates as cognitive decline worsens in multiple sclerosis. Neurology 93(14):e1348–e1359

    Article  PubMed  Google Scholar 

  18. Damjanovic D et al (2017) Hippocampal and deep gray matter nuclei atrophy is relevant for explaining cognitive impairment in MS: a multicenter study. AJNR Am J Neuroradiol 38(1):18–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rocca MA et al (2012) Large-scale neuronal network dysfunction in relapsing-remitting multiple sclerosis. Neurology 79(14):1449–1457

    Article  PubMed  Google Scholar 

  20. Bonavita S et al (2011) Distributed changes in default-mode resting-state connectivity in multiple sclerosis. Mult Scler 17(4):411–422

    Article  PubMed  Google Scholar 

  21. Rocca MA et al (2009) Structural and functional MRI correlates of Stroop control in benign MS. Hum Brain Mapp 30(1):276–290

    Article  PubMed  Google Scholar 

  22. Audoin B et al (2003) Compensatory cortical activation observed by fMRI during a cognitive task at the earliest stage of MS. Hum Brain Mapp 20(2):51–58

    Article  PubMed  PubMed Central  Google Scholar 

  23. Rocca MA et al (2018) Functional network connectivity abnormalities in multiple sclerosis: correlations with disability and cognitive impairment. Mult Scler 24(4):459–471

    Article  PubMed  Google Scholar 

  24. Hawellek DJ et al (2011) Increased functional connectivity indicates the severity of cognitive impairment in multiple sclerosis. Proc Natl Acad Sci USA 108(47):19066–19071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Preziosa P et al (2017) Progression of regional atrophy in the left hemisphere contributes to clinical and cognitive deterioration in multiple sclerosis: a 5-year study. Hum Brain Mapp 38(11):5648–5665

    Article  PubMed  PubMed Central  Google Scholar 

  26. Calabrese M et al (2012) Cortical lesion load associates with progression of disability in multiple sclerosis. Brain 135(Pt 10):2952–2961

    Article  PubMed  Google Scholar 

  27. Loitfelder M et al (2014) Brain activity changes in cognitive networks in relapsing-remitting multiple sclerosis—insights from a longitudinal FMRI study. PLoS ONE 9(4):e93715

    Article  PubMed  PubMed Central  Google Scholar 

  28. Audoin B et al (2008) Efficiency of cognitive control recruitment in the very early stage of multiple sclerosis: a one-year fMRI follow-up study. Mult Scler 14(6):786–792

    Article  CAS  PubMed  Google Scholar 

  29. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1):97–113

    Article  CAS  PubMed  Google Scholar 

  30. Kurtzke JF (1983) Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 33(11):1444–1452

    Article  CAS  PubMed  Google Scholar 

  31. Lublin FD, Reingold SC (1996) Defining the clinical course of multiple sclerosis: results of an international survey. National Multiple Sclerosis Society (USA) Advisory Committee on Clinical Trials of New Agents in Multiple Sclerosis. Neurology 46(4):907–911

    Article  CAS  PubMed  Google Scholar 

  32. Rao SM, the Cognitive Function Study Group of the National Multiple Sclerosis Society (1990) A manual for the Brief Repeatable Battery of Neuropsychological Tests in multiple sclerosis. Medical College of Wisconsin, Milwakee

    Google Scholar 

  33. Amato MP et al (2006) The Rao’s Brief Repeatable Battery and Stroop Test: normative values with age, education and gender corrections in an Italian population. Mult Scler 12(6):787–793

    Article  CAS  PubMed  Google Scholar 

  34. Goretti B et al (2014) The Rao’s Brief Repeatable Battery version B: normative values with age, education and gender corrections in an Italian population. Neurol Sci 35(1):79–82

    Article  CAS  PubMed  Google Scholar 

  35. Sepulcre J et al (2006) Cognitive impairment in patients with multiple sclerosis using the Brief Repeatable Battery-Neuropsychology test. Mult Scler 12(2):187–195

    Article  CAS  PubMed  Google Scholar 

  36. Amato MP et al (2018) Cognitive assessment in multiple sclerosis-an Italian consensus. Neurol Sci 39(8):1317–1324

    Article  PubMed  Google Scholar 

  37. Portaccio E et al (2013) Natalizumab may reduce cognitive changes and brain atrophy rate in relapsing-remitting multiple sclerosis—a prospective, non-randomized pilot study. Eur J Neurol 20(6):986–990

    Article  CAS  PubMed  Google Scholar 

  38. Preziosa P et al (2020) Effects of natalizumab and fingolimod on clinical, cognitive, and magnetic resonance imaging measures in multiple sclerosis. Neurotherapeutics 17(1):208–217

    Article  CAS  PubMed  Google Scholar 

  39. Chard DT et al (2010) Reducing the impact of white matter lesions on automated measures of brain gray and white matter volumes. J Magn Reson Imaging 32(1):223–228

    Article  PubMed  Google Scholar 

  40. Smith SM et al (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31(4):1487–1505

    Article  PubMed  Google Scholar 

  41. Ashburner J (2007) A fast diffeomorphic image registration algorithm. Neuroimage 38(1):95–113

    Article  PubMed  Google Scholar 

  42. Ashburner J, Ridgway GR (2012) Symmetric diffeomorphic modeling of longitudinal structural MRI. Front Neurosci 6:197

    PubMed  Google Scholar 

  43. Whitfield-Gabrieli S, Nieto-Castanon A (2012) Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect 2(3):125–141

    Article  PubMed  Google Scholar 

  44. Behzadi Y et al (2007) A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. Neuroimage 37(1):90–101

    Article  PubMed  Google Scholar 

  45. Calhoun VD et al (2001) A method for making group inferences from functional MRI data using independent component analysis. Hum Brain Mapp 14(3):140–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Himberg J, Hyvarinen A, Esposito F (2004) Validating the independent components of neuroimaging time series via clustering and visualization. Neuroimage 22(3):1214–1222

    Article  PubMed  Google Scholar 

  47. Seeley WW et al (2007) Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 27(9):2349–2356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Raichle ME et al (2001) A default mode of brain function. Proc Natl Acad Sci USA 98(2):676–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Linden DE (2007) The working memory networks of the human brain. Neuroscientist 13(3):257–267

    Article  PubMed  Google Scholar 

  50. Nichols TE, Holmes AP (2002) Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp 15(1):1–25

    Article  PubMed  Google Scholar 

  51. Achiron A et al (2013) Modeling of cognitive impairment by disease duration in multiple sclerosis: a cross-sectional study. PLoS ONE 8(8):e71058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Patti F et al (2009) Cognitive impairment and its relation with disease measures in mildly disabled patients with relapsing-remitting multiple sclerosis: baseline results from the Cognitive Impairment in Multiple Sclerosis (COGIMUS) study. Mult Scler 15(7):779–788

    Article  CAS  PubMed  Google Scholar 

  53. Sumowski JF et al (2018) Cognition in multiple sclerosis: state of the field and priorities for the future. Neurology 90(6):278–288

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ruano L et al (2017) Age and disability drive cognitive impairment in multiple sclerosis across disease subtypes. Mult Scler 23(9):1258–1267

    Article  PubMed  Google Scholar 

  55. Van Schependom J et al (2015) Reduced information processing speed as primum movens for cognitive decline in MS. Mult Scler 21(1):83–91

    Article  PubMed  Google Scholar 

  56. Rocca MA et al (2021) Association of gray matter atrophy patterns with clinical phenotype and progression in multiple sclerosis. Neurology 96(11):e1561–e1573

    Article  CAS  PubMed  Google Scholar 

  57. Altermatt A et al (2018) Clinical correlations of brain lesion location in multiple sclerosis: voxel-based analysis of a large clinical trial dataset. Brain Topogr 31(5):886–894

    Article  PubMed  Google Scholar 

  58. Preziosa P et al (2023) NODDI, diffusion tensor microstructural abnormalities and atrophy of brain white matter and gray matter contribute to cognitive impairment in multiple sclerosis. J Neurol 270(2):810–823

    Article  CAS  PubMed  Google Scholar 

  59. Tommasin S et al (2020) Multi-scale resting state functional reorganization in response to multiple sclerosis damage. Neuroradiology 62(6):693–704

    Article  PubMed  Google Scholar 

  60. Rocca MA et al (2021) Network damage predicts clinical worsening in multiple sclerosis: a 6.4-year study. Neurol Neuroimmunol Neuroinflamm 8(4):e1006

    Article  PubMed  PubMed Central  Google Scholar 

  61. Deloire MS et al (2011) MRI predictors of cognitive outcome in early multiple sclerosis. Neurology 76(13):1161–1167

    Article  CAS  PubMed  Google Scholar 

  62. Li DK et al (2006) MRI T2 lesion burden in multiple sclerosis: a plateauing relationship with clinical disability. Neurology 66(9):1384–1389

    Article  CAS  PubMed  Google Scholar 

  63. Asaf A, Evan S, Anat A (2015) Injury to white matter tracts in relapsing-remitting multiple sclerosis: a possible therapeutic window within the first 5 years from onset using diffusion-tensor imaging tract-based spatial statistics. Neuroimage Clin 8:261–266

    Article  PubMed  PubMed Central  Google Scholar 

  64. Harel A et al (2018) Brain microstructural injury occurs in patients with RRMS despite “no evidence of disease activity.” J Neurol Neurosurg Psychiatry 89(9):977–982

    Article  PubMed  Google Scholar 

  65. Rocca MA et al (2016) Clinically isolated syndrome suggestive of multiple sclerosis: dynamic patterns of gray and white matter changes-a 2-year mr imaging study. Radiology 278(3):841–853

    Article  PubMed  Google Scholar 

  66. Schneider R et al (2019) Temporal dynamics of diffusion metrics in early multiple sclerosis and clinically isolated syndrome: a 2-year follow-up tract-based spatial statistics study. Front Neurol 10:1165

    Article  PubMed  PubMed Central  Google Scholar 

  67. Alshehri A et al (2022) Stability of longitudinal DTI metrics in MS with treatment of injectables, fingolimod and dimethyl fumarate. Neuroradiol J. https://doi.org/10.1177/19714009221140511

    Article  PubMed  Google Scholar 

  68. Wiebenga OT et al (2016) White matter diffusion changes during the first year of natalizumab treatment in relapsing-remitting multiple sclerosis. AJNR Am J Neuroradiol 37(6):1030–1037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Eijlers AJC et al (2018) Predicting cognitive decline in multiple sclerosis: a 5-year follow-up study. Brain 141(9):2605–2618

    PubMed  Google Scholar 

  70. Eshaghi A et al (2018) Progression of regional grey matter atrophy in multiple sclerosis. Brain 141(6):1665–1677

    Article  PubMed  PubMed Central  Google Scholar 

  71. Matias-Guiu JA et al (2018) Identification of cortical and subcortical correlates of cognitive performance in multiple sclerosis using voxel-based morphometry. Front Neurol 9:920

    Article  PubMed  PubMed Central  Google Scholar 

  72. Conti L et al (2021) Unraveling the substrates of cognitive impairment in multiple sclerosis: a multiparametric structural and functional magnetic resonance imaging study. Eur J Neurol 28(11):3749–3759

    Article  PubMed  Google Scholar 

  73. Riccitelli GC et al (2020) Cognitive impairment in benign multiple sclerosis: a multiparametric structural and functional MRI study. J Neurol 267(12):3508–3517

    Article  CAS  PubMed  Google Scholar 

  74. Geisseler O et al (2016) Cortical thinning in the anterior cingulate cortex predicts multiple sclerosis patients’ fluency performance in a lateralised manner. Neuroimage Clin 10:89–95

    Article  PubMed  Google Scholar 

  75. Rocca MA et al (2022) Task- and resting-state fMRI studies in multiple sclerosis: from regions to systems and time-varying analysis. Current status and future perspective. Neuroimage Clin 35:103076

    Article  PubMed  PubMed Central  Google Scholar 

  76. Cruz-Gomez AJ et al (2014) The link between resting-state functional connectivity and cognition in MS patients. Mult Scler 20(3):338–348

    Article  PubMed  Google Scholar 

  77. Rocca MA et al (2010) Default-mode network dysfunction and cognitive impairment in progressive MS. Neurology 74(16):1252–1259

    Article  CAS  PubMed  Google Scholar 

  78. Huiskamp M et al (2021) Longitudinal network changes and conversion to cognitive impairment in multiple sclerosis. Neurology 97(8):e794–e802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Amato MP et al (2008) Cognitive assessment and quantitative magnetic resonance metrics can help to identify benign multiple sclerosis. Neurology 71(9):632–638

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Filippi.

Ethics declarations

Ethical approval

Approval was received from the institutional ethical standards committee on human experimentation of IRCCS Ospedale San Raffaele for any experiments using human subjects (Protocol N° 2009-74). Written informed consent was obtained from all subjects prior to study participation according to the Declaration of Helsinki.

Conflicts of interest

Matteo Azzimonti has nothing to disclose. Paolo Preziosa received speaker honoraria from Roche, Biogen, Novartis, Merck Serono, Bristol Myers Squibb and Genzyme; he has received research support from the Italian Ministry of Health and Fondazione Italiana Sclerosi Multipla. Elisabetta Pagani received speaker honoraria from Biogen Idec. Paola Valsasina received speaker honoraria from Biogen Idec. Nicolò Tedone has nothing to disclose. Carmen Vizzino has nothing to disclose. Maria A. Rocca received consulting fees from Biogen, Bristol Myers Squibb, Eli Lilly, Janssen, Roche; and speaker honoraria from AstraZaneca, Biogen, Bristol Myers Squibb, Bromatech, Celgene, Genzyme, Horizon Therapeutics Italy, Merck Serono SpA, Novartis, Roche, Sanofi and Teva. She receives research support from the MS Society of Canada, the Italian Ministry of Health, and Fondazione Italiana Sclerosi Multipla. She is Associate Editor for Multiple Sclerosis and Related Disorders. Massimo Filippi is Editor-in-Chief of the Journal of Neurology, Associate Editor of Human Brain Map**, Neurological Sciences, and Radiology; received compensation for consulting services from Alexion, Almirall, Biogen, Merck, Novartis, Roche, Sanofi; speaking activities from Bayer, Biogen, Celgene, Chiesi Italia SpA, Eli Lilly, Genzyme, Janssen, Merck-Serono, Neopharmed Gentili, Novartis, Novo Nordisk, Roche, Sanofi, Takeda, and TEVA; participation in Advisory Boards for Alexion, Biogen, Bristol-Myers Squibb, Merck, Novartis, Roche, Sanofi, Sanofi-Aventis, Sanofi-Genzyme, Takeda; scientific direction of educational events for Biogen, Merck, Roche, Celgene, Bristol-Myers Squibb, Lilly, Novartis, Sanofi-Genzyme; he receives research support from Biogen Idec, Merck-Serono, Novartis, Roche, Italian Ministry of Health, and Fondazione Italiana Sclerosi Multipla.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 26 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azzimonti, M., Preziosa, P., Pagani, E. et al. Functional and structural brain MRI changes associated with cognitive worsening in multiple sclerosis: a 3-year longitudinal study. J Neurol 270, 4296–4308 (2023). https://doi.org/10.1007/s00415-023-11778-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-023-11778-z

Keywords

Navigation