Log in

Similarities and differences between “uncapped” telomeres and DNA double-strand breaks

  • Review
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Telomeric DNA is present at the ends of eukaryotic chromosomes and is bound by telomere “cap**” proteins, which are the (Cdc13–Stn1–Ten1) CST complex, Ku (Yku70–Yku80), and Rap1–Rif1–Rif2 in budding yeast. Inactivation of any of these complexes causes telomere “uncap**,” stimulating a DNA damage response (DDR) that frequently involves resection of telomeric DNA and stimulates cell cycle arrest. This is presumed to occur because telomeres resemble one half of a DNA double-strand break (DSB). In this review, we outline the DDR that occurs at DSBs and compare it to the DDR occurring at uncapped telomeres, in both budding yeast and metazoans. We give particular attention to the resection of DSBs in budding yeast by Mre11–Xrs2–Rad50 (MRX), Sgs1/Dna2, and Exo1 and compare their roles at DSBs and uncapped telomeres. We also discuss how resection uncapped telomeres in budding yeast is promoted by the by 9–1–1 complex (Rad17–Mec3–Ddc1), to illustrate how analysis of uncapped telomeres can serve as a model for the DDR elsewhere in the genome. Finally, we discuss the role of the helicase Pif1 and its requirement for resection of uncapped telomeres, but not DSBs. Pif1 has roles in DNA replication and mammalian and plant CST complexes have been identified and have roles in global genome replication. Based on these observations, we suggest that while the DDR at uncapped telomeres is partially due to their resemblance to a DSB, it may also be partially due to defective DNA replication. Specifically, we propose that the budding yeast CST complex has dual roles to inhibit a DSB-like DDR initiated by Exo1 and a replication-associated DDR initiated by Pif1. If true, this would suggest that the mammalian CST complex inhibits a Pif1-dependent DDR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Addinall SG, Holstein EM, Lawless C, Yu M, Chapman K, Banks AP, Ngo HP, Maringele L, Taschuk M, Young A, Ciesiolka A, Lister AL, Wipat A, Wilkinson DJ, Lydall D (2011) Quantitative fitness analysis shows that NMD proteins and many other protein complexes suppress or enhance distinct telomere cap defects. PLoS Genet 7(4):e1001362. doi:10.1371/journal.pgen.1001362

    Article  PubMed  CAS  Google Scholar 

  • Agarwal R, Tang Z, Yu H, Cohen-Fix O (2003) Two distinct pathways for inhibiting pds1 ubiquitination in response to DNA damage. J Biol Chem 278(45):45027–45033. doi:10.1074/jbc.M306783200

    Article  PubMed  CAS  Google Scholar 

  • Allshire RC, Dempster M, Hastie ND (1989) Human telomeres contain at least three types of G-rich repeat distributed non-randomly. Nucleic Acids Res 17(12):4611–4627

    Article  PubMed  CAS  Google Scholar 

  • Anbalagan S, Bonetti D, Lucchini G, Longhese MP (2011) Rif1 supports the function of the CST complex in yeast telomere cap**. PLoS Genet 7(3):e1002024. doi:10.1371/journal.pgen.1002024

    Article  PubMed  CAS  Google Scholar 

  • Aylon Y, Kupiec M (2003) The checkpoint protein Rad24 of Saccharomyces cerevisiae is involved in processing double-strand break ends and in recombination partner choice. Mol Cell Biol 23(18):6585–6596

    Article  PubMed  CAS  Google Scholar 

  • Bae NS, Baumann P (2007) A RAP1/TRF2 complex inhibits nonhomologous end-joining at human telomeric DNA ends. Mol Cell 26(3):323–334. doi:10.1016/j.molcel.2007.03.023

    Article  PubMed  CAS  Google Scholar 

  • Baumann P, Cech TR (2001) Pot1, the putative telomere end-binding protein in fission yeast and humans. Science 292(5519):1171–1175

    Article  PubMed  CAS  Google Scholar 

  • Bianchi A, de Lange T (1999) Ku binds telomeric DNA in vitro. J Biol Chem 274(30):21223–21227

    Article  PubMed  CAS  Google Scholar 

  • Bilaud T, Brun C, Ancelin K, Koering CE, Laroche T, Gilson E (1997) Telomeric localization of TRF2, a novel human telobox protein. Nat Genet 17(2):236–239. doi:10.1038/ng1097-236

    Article  PubMed  CAS  Google Scholar 

  • Blankley RT, Lydall D (2004) A domain of Rad9 specifically required for activation of Chk1 in budding yeast. J Cell Sci 117(Pt 4):601–608. doi:10.1242/jcs.00907

    Article  PubMed  CAS  Google Scholar 

  • Blasco MA, Lee HW, Hande MP, Samper E, Lansdorp PM, DePinho RA, Greider CW (1997) Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91(1):25–34

    Article  PubMed  CAS  Google Scholar 

  • Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB, Harley CB, Shay JW, Lichtsteiner S, Wright WE (1998) Extension of life-span by introduction of telomerase into normal human cells. Science 279(5349):349–352

    Article  PubMed  CAS  Google Scholar 

  • Bombarde O, Boby C, Gomez D, Frit P, Giraud-Panis MJ, Gilson E, Salles B, Calsou P (2010) TRF2/RAP1 and DNA-PK mediate a double protection against joining at telomeric ends. EMBO J 29(9):1573–1584. doi:10.1038/emboj.2010.49

    Article  PubMed  CAS  Google Scholar 

  • Bonetti D, Martina M, Clerici M, Lucchini G, Longhese MP (2009) Multiple pathways regulate 3′ overhang generation at S. cerevisiae telomeres. Mol Cell 35(1):70–81. doi:10.1016/j.molcel.2009.05.015

    Article  PubMed  CAS  Google Scholar 

  • Bonetti D, Clerici M, Anbalagan S, Martina M, Lucchini G, Longhese MP (2010) Shelterin-like proteins and Yku inhibit nucleolytic processing of Saccharomyces cerevisiae telomeres. PLoS Genet 6(5):e1000966. doi:10.1371/journal.pgen.1000966

    Article  PubMed  CAS  Google Scholar 

  • Broccoli D, Smogorzewska A, Chong L, de Lange T (1997) Human telomeres contain two distinct Myb-related proteins, TRF1 and TRF2. Nat Genet 17(2):231–235. doi:10.1038/ng1097-231

    Article  PubMed  CAS  Google Scholar 

  • Budd ME, Reis CC, Smith S, Myung K, Campbell JL (2006) Evidence suggesting that Pif1 helicase functions in DNA replication with the Dna2 helicase/nuclease and DNA polymerase delta. Mol Cell Biol 26(7):2490–2500. doi:10.1128/MCB.26.7.2490-2500.2006

    Article  PubMed  CAS  Google Scholar 

  • Bunting SF, Callen E, Wong N, Chen HT, Polato F, Gunn A, Bothmer A, Feldhahn N, Fernandez-Capetillo O, Cao L, Xu X, Deng CX, Finkel T, Nussenzweig M, Stark JM et al (2010) 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. Cell 141(2):243–254. doi:10.1016/j.cell.2010.03.012

    Article  PubMed  CAS  Google Scholar 

  • Cejka P, Cannavo E, Polaczek P, Masuda-Sasa T, Pokharel S, Campbell JL, Kowalczykowski SC (2010) DNA end resection by Dna2–Sgs1–RPA and its stimulation by Top3–Rmi1 and Mre11–Rad50–Xrs2. Nature 467(7311):112–116. doi:10.1038/nature09355

    Article  PubMed  CAS  Google Scholar 

  • Celli GB, de Lange T (2005) DNA processing is not required for ATM-mediated telomere damage response after TRF2 deletion. Nat Cell Biol 7(7):712–718. doi:10.1038/ncb1275

    Article  PubMed  CAS  Google Scholar 

  • Chang M, Luke B, Kraft C, Li Z, Peter M, Lingner J, Rothstein R (2009) Telomerase is essential to alleviate pif1-induced replication stress at telomeres. Genetics 183(3):779–791. doi:10.1534/genetics.109.107631

    Article  PubMed  CAS  Google Scholar 

  • Chen SH, Smolka MB, Zhou H (2007) Mechanism of Dun1 activation by Rad53 phosphorylation in Saccharomyces cerevisiae. J Biol Chem 282(2):986–995. doi:10.1074/jbc.M609322200

    Article  PubMed  CAS  Google Scholar 

  • Cherry JM, Ball C, Weng S, Juvik G, Schmidt R, Adler C, Dunn B, Dwight S, Riles L, Mortimer RK, Botstein D (1997) Genetic and physical maps of Saccharomyces cerevisiae. Nature 387(6632 Suppl):67–73

    PubMed  CAS  Google Scholar 

  • Chikashige Y, Hiraoka Y (2001) Telomere binding of the Rap1 protein is required for meiosis in fission yeast. Curr Biol 11(20):1618–1623

    Article  PubMed  CAS  Google Scholar 

  • Chung WH, Zhu Z, Papusha A, Malkova A, Ira G (2010) Defective resection at DNA double-strand breaks leads to de novo telomere formation and enhances gene targeting. PLoS Genet 6(5):e1000948. doi:10.1371/journal.pgen.1000948

    Article  PubMed  CAS  Google Scholar 

  • Churikov D, Price CM (2008) Pot1 and cell cycle progression cooperate in telomere length regulation. Nat Struct Mol Biol 15(1):79–84. doi:10.1038/nsmb1331

    Article  PubMed  CAS  Google Scholar 

  • Ciccia A, Elledge SJ (2010) The DNA damage response: making it safe to play with knives. Mol Cell 40(2):179–204. doi:10.1016/j.molcel.2010.09.019

    Article  PubMed  CAS  Google Scholar 

  • Cimino-Reale G, Pascale E, Alvino E, Starace G, D'Ambrosio E (2003) Long telomeric C-rich 5′-tails in human replicating cells. J Biol Chem 278(4):2136–2140

    Article  PubMed  CAS  Google Scholar 

  • Ciosk R, Zachariae W, Michaelis C, Shevchenko A, Mann M, Nasmyth K (1998) An ESP1/PDS1 complex regulates loss of sister chromatid cohesion at the metaphase to anaphase transition in yeast. Cell 93(6):1067–1076

    Article  PubMed  CAS  Google Scholar 

  • Cooper JP, Nimmo ER, Allshire RC, Cech TR (1997) Regulation of telomere length and function by a Myb-domain protein in fission yeast. Nature 385(6618):744–747. doi:10.1038/385744a0

    Article  PubMed  CAS  Google Scholar 

  • Cooper JP, Watanabe Y, Nurse P (1998) Fission yeast Taz1 protein is required for meiotic telomere clustering and recombination. Nature 392(6678):828–831. doi:10.1038/33947

    Article  PubMed  CAS  Google Scholar 

  • Cotta-Ramusino C, McDonald ER 3rd, Hurov K, Sowa ME, Harper JW, Elledge SJ (2011) A DNA damage response screen identifies RHINO, a 9–1–1 and TopBP1 interacting protein required for ATR signaling. Science 332(6035):1313–1317. doi:10.1126/science.1203430

    Article  PubMed  CAS  Google Scholar 

  • d'Adda di Fagagna F, Reaper PM, Clay-Farrace L, Fiegler H, Carr P, Von Zglinicki T, Saretzki G, Carter NP, Jackson SP (2003) A DNA damage checkpoint response in telomere-initiated senescence. Nature 426(6963):194–198. doi:10.1038/nature02118

    Article  PubMed  CAS  Google Scholar 

  • de Lange T (2005) Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev 19(18):2100–2110. doi:10.1101/gad.1346005

    Article  PubMed  CAS  Google Scholar 

  • de Lange T (2009) How telomeres solve the end-protection problem. Science 326(5955):948–952. doi:10.1126/science.1170633

    Article  PubMed  CAS  Google Scholar 

  • de Lange T, Shiue L, Myers RM, Cox DR, Naylor SL, Killery AM, Varmus HE (1990) Structure and variability of human chromosome ends. Mol Cell Biol 10(2):518–527

    PubMed  Google Scholar 

  • Dewar JM, Lydall D (2010) Pif1- and Exo1-dependent nucleases coordinate checkpoint activation following telomere uncap**. EMBO J 29(23):4020–4034. doi:10.1038/emboj.2010.267

    Article  PubMed  CAS  Google Scholar 

  • Downs JA, Allard S, Jobin-Robitaille O, Javaheri A, Auger A, Bouchard N, Kron SJ, Jackson SP, Cote J (2004) Binding of chromatin-modifying activities to phosphorylated histone H2A at DNA damage sites. Mol Cell 16(6):979–990. doi:10.1016/j.molcel.2004.12.003

    Article  PubMed  CAS  Google Scholar 

  • Ellison V, Stillman B (2003) Biochemical characterization of DNA damage checkpoint complexes: clamp loader and clamp complexes with specificity for 5' recessed DNA. PLoS Biol 1(2):E33. doi:10.1371/journal.pbio.0000033

    Article  PubMed  CAS  Google Scholar 

  • Falck J, Coates J, Jackson SP (2005) Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature 434(7033):605–611

    Article  PubMed  CAS  Google Scholar 

  • Faure V, Coulon S, Hardy J, Geli V (2010) Cdc13 and telomerase bind through different mechanisms at the lagging- and leading-strand telomeres. Mol Cell 38(6):842–852. doi:10.1016/j.molcel.2010.05.016

    Article  PubMed  CAS  Google Scholar 

  • Feldmann H, Winnacker EL (1993) A putative homologue of the human autoantigen Ku from Saccharomyces cerevisiae. J Biol Chem 268(17):12895–12900

    PubMed  CAS  Google Scholar 

  • Foster SS, Zubko MK, Guillard S, Lydall D (2006) MRX protects telomeric DNA at uncapped telomeres of budding yeast cdc13-1 mutants. DNA Repair (Amst) 5(7):840–851

    Article  CAS  Google Scholar 

  • Foster SS, Balestrini A, Petrini JH (2011) Functional interplay of the Mre11 nuclease and Ku in the response to replication-associated DNA damage. Mol Cell Biol. doi:10.1128/MCB.05854-11

  • Frank-Vaillant M, Marcand S (2002) Transient stability of DNA ends allows nonhomologous end joining to precede homologous recombination. Molecular cell 10(5):1189–1199

    Article  PubMed  CAS  Google Scholar 

  • Fuster JJ, Andres V (2006) Telomere biology and cardiovascular disease. Circ Res 99(11):1167–1180. doi:10.1161/01.RES.0000251281.00845.18

    Article  PubMed  CAS  Google Scholar 

  • Gao H, Cervantes RB, Mandell EK, Otero JH, Lundblad V (2007) RPA-like proteins mediate yeast telomere function. Nat Struct Mol Biol 14(3):208–214

    Article  PubMed  CAS  Google Scholar 

  • Gardner R, Putnam CW, Weinert T (1999) RAD53, DUN1 and PDS1 define two parallel G2/M checkpoint pathways in budding yeast. EMBO J 18(11):3173–3185. doi:10.1093/emboj/18.11.3173

    Article  PubMed  CAS  Google Scholar 

  • Garvik B, Carson M, Hartwell L (1995) Single-stranded DNA arising at telomeres in cdc13 mutants may constitute a specific signal for the RAD9 checkpoint. Mol Cell Biol 15(11):6128–6138

    PubMed  CAS  Google Scholar 

  • Gravel S, Larrivee M, Labrecque P, Wellinger RJ (1998) Yeast Ku as a regulator of chromosomal DNA end structure. Science 280(5364):741–744

    Article  PubMed  CAS  Google Scholar 

  • Gravel S, Chapman JR, Magill C, Jackson SP (2008) DNA helicases Sgs1 and BLM promote DNA double-strand break resection. Genes Dev 22(20):2767–2772. doi:10.1101/gad.503108

    Article  PubMed  CAS  Google Scholar 

  • Griffith JD, Comeau L, Rosenfield S, Stansel RM, Bianchi A, Moss H, de Lange T (1999) Mammalian telomeres end in a large duplex loop. Cell 97(4):503–514

    Article  PubMed  CAS  Google Scholar 

  • Haber JE (2002) Uses and abuses of HO endonuclease. Methods Enzymol 350:141–164

    Article  PubMed  CAS  Google Scholar 

  • Hammet A, Magill C, Heierhorst J, Jackson SP (2007) Rad9 BRCT domain interaction with phosphorylated H2AX regulates the G1 checkpoint in budding yeast. EMBO Rep 8(9):851–857. doi:10.1038/sj.embor.7401036

    Article  PubMed  CAS  Google Scholar 

  • Harrison JC, Haber JE (2006) Surviving the breakup: the DNA damage checkpoint. Annu Rev Genet 40:209–235. doi:10.1146/annurev.genet.40.051206.105231

    Article  PubMed  CAS  Google Scholar 

  • Heiss NS, Knight SW, Vulliamy TJ, Klauck SM, Wiemann S, Mason PJ, Poustka A, Dokal I (1998) X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions. Nat Genet 19(1):32–38. doi:10.1038/ng0598-32

    Article  PubMed  CAS  Google Scholar 

  • Hockemeyer D, Palm W, Else T, Daniels JP, Takai KK, Ye JZ, Keegan CE, de Lange T, Hammer GD (2007) Telomere protection by mammalian Pot1 requires interaction with Tpp 1. Nat Struct Mol Biol 14(8):754–761. doi:10.1038/nsmb1270

    Article  PubMed  CAS  Google Scholar 

  • Houghtaling BR, Cuttonaro L, Chang W, Smith S (2004) A dynamic molecular link between the telomere length regulator TRF1 and the chromosome end protector TRF2. Curr Biol 14(18):1621–1631. doi:10.1016/j.cub.2004.08.052

    Article  PubMed  CAS  Google Scholar 

  • Hsu HL, Gilley D, Blackburn EH, Chen DJ (1999) Ku is associated with the telomere in mammals. Proc Natl Acad Sci U S A 96(22):12454–12458

    Article  PubMed  CAS  Google Scholar 

  • Hsu HL, Gilley D, Galande SA, Hande MP, Allen B, Kim SH, Li GC, Campisi J, Kohwi-Shigematsu T, Chen DJ (2000) Ku acts in a unique way at the mammalian telomere to prevent end joining. Genes Dev 14(22):2807–2812

    Article  PubMed  CAS  Google Scholar 

  • Hu F, Wang Y, Liu D, Li Y, Qin J, Elledge SJ (2001) Regulation of the Bub2/Bfa1 GAP complex by Cdc5 and cell cycle checkpoints. Cell 107(5):655–665

    Article  PubMed  CAS  Google Scholar 

  • Ivanov EL, Sugawara N, White CI, Fabre F, Haber JE (1994) Mutations in XRS2 and RAD50 delay but do not prevent mating-type switching in Saccharomyces cerevisiae. Mol Cell Biol 14(5):3414–3425

    PubMed  CAS  Google Scholar 

  • Jain D, Cooper JP (2010) Telomeric strategies: means to an end. Annu Rev Genet 44:243–269. doi:10.1146/annurev-genet-102108-134841

    Article  PubMed  CAS  Google Scholar 

  • Jazayeri A, Falck J, Lukas C, Bartek J, Smith GC, Lukas J, Jackson SP (2006) ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks. Nat Cell Biol 8(1):37–45. doi:10.1038/ncb1337

    Article  PubMed  CAS  Google Scholar 

  • Jia X, Weinert T, Lydall D (2004) Mec1 and Rad53 inhibit formation of single-stranded DNA at telomeres of Saccharomyces cerevisiae cdc13-1 mutants. Genetics 166(2):753–764

    Article  PubMed  CAS  Google Scholar 

  • Kanoh J, Ishikawa F (2001) spRap1 and spRif1, recruited to telomeres by Taz1, are essential for telomere function in fission yeast. Curr Biol 11(20):1624–1630

    Article  PubMed  CAS  Google Scholar 

  • Karlseder J, Broccoli D, Dai Y, Hardy S, de Lange T (1999) p53- and ATM-dependent apoptosis induced by telomeres lacking TRF2. Science 283(5406):1321–1325

    Article  PubMed  CAS  Google Scholar 

  • Kelleher C, Kurth I, Lingner J (2005) Human protection of telomeres 1 (POT1) is a negative regulator of telomerase activity in vitro. Mol Cell Biol 25(2):808–818

    Article  PubMed  CAS  Google Scholar 

  • Kim EM, Burke DJ (2008) DNA damage activates the SAC in an ATM/ATR-dependent manner, independently of the kinetochore. PLoS Genet 4(2):e1000015. doi:10.1371/journal.pgen.1000015

    Article  PubMed  CAS  Google Scholar 

  • Kim SH, Kaminker P, Campisi J (1999) TIN2, a new regulator of telomere length in human cells. Nat Genet 23(4):405–412. doi:10.1038/70508

    Article  PubMed  CAS  Google Scholar 

  • Lahaye A, Stahl H, Thines-Sempoux D, Foury F (1991) PIF1: a DNA helicase in yeast mitochondria. EMBO J 10(4):997–1007

    PubMed  CAS  Google Scholar 

  • Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J et al (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921. doi:10.1038/35057062

    Article  PubMed  CAS  Google Scholar 

  • Lansdorp PM (2009) Telomeres and disease. EMBO J 28(17):2532–2540. doi:10.1038/emboj.2009.172

    Article  PubMed  CAS  Google Scholar 

  • Lazzaro F, Sapountzi V, Granata M, Pellicioli A, Vaze M, Haber JE, Plevani P, Lydall D, Muzi-Falconi M (2008) Histone methyltransferase Dot1 and Rad9 inhibit single-stranded DNA accumulation at DSBs and uncapped telomeres. EMBO J 27(10):1502–1512. doi:10.1038/emboj.2008.81

    PubMed  CAS  Google Scholar 

  • Lee HW, Blasco MA, Gottlieb GJ, Horner JW 2nd, Greider CW, DePinho RA (1998a) Essential role of mouse telomerase in highly proliferative organs. Nature 392(6676):569–574. doi:10.1038/33345

    Article  PubMed  CAS  Google Scholar 

  • Lee SE, Moore JK, Holmes A, Umezu K, Kolodner RD, Haber JE (1998b) Saccharomyces Ku70, mre11/rad50 and RPA proteins regulate adaptation to G2/M arrest after DNA damage. Cell 94(3):399–409

    Article  PubMed  CAS  Google Scholar 

  • Lee SJ, Schwartz MF, Duong JK, Stern DF (2003) Rad53 phosphorylation site clusters are important for Rad53 regulation and signaling. Mol Cell Biol 23(17):6300–6314

    Article  PubMed  CAS  Google Scholar 

  • Li B, Oestreich S, de Lange T (2000) Identification of human Rap1: implications for telomere evolution. Cell 101(5):471–483

    Article  PubMed  CAS  Google Scholar 

  • Lin TT, Letsolo BT, Jones RE, Rowson J, Pratt G, Hewamana S, Fegan C, Pepper C, Baird DM (2010) Telomere dysfunction and fusion during the progression of chronic lymphocytic leukemia: evidence for a telomere crisis. Blood 116(11):1899–1907. doi:10.1182/blood-2010-02-272104

    Article  PubMed  CAS  Google Scholar 

  • Lisby M, Barlow JH, Burgess RC, Rothstein R (2004) Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins. Cell 118(6):699–713. doi:10.1016/j.cell.2004.08.015

    Article  PubMed  CAS  Google Scholar 

  • Liu D, Safari A, O'Connor MS, Chan DW, Laegeler A, Qin J, Songyang Z (2004) PTOP interacts with POT1 and regulates its localization to telomeres. Nat Cell Biol 6(7):673–680. doi:10.1038/ncb1142

    Article  PubMed  CAS  Google Scholar 

  • Loayza D, De Lange T (2003) POT1 as a terminal transducer of TRF1 telomere length control. Nature 423(6943):1013–1018

    Article  PubMed  CAS  Google Scholar 

  • Lopes J, Piazza A, Bermejo R, Kriegsman B, Colosio A, Teulade-Fichou MP, Foiani M, Nicolas A (2011) G-quadruplex-induced instability during leading-strand replication. EMBO J. doi:10.1038/emboj.2011.316

  • Lydall D (2009) Taming the tiger by the tail: modulation of DNA damage responses by telomeres. EMBO J 28(15):2174–2187. doi:10.1038/emboj.2009.176

    Article  PubMed  CAS  Google Scholar 

  • Lydall D, Weinert T (1995) Yeast checkpoint genes in DNA damage processing: implications for repair and arrest. Science 270(5241):1488–1491

    Article  PubMed  CAS  Google Scholar 

  • Majka J, Burgers PM (2003) Yeast Rad17/Mec3/Ddc1: a sliding clamp for the DNA damage checkpoint. Proc Natl Acad Sci U S A 100(5):2249–2254

    Article  PubMed  CAS  Google Scholar 

  • Mandell EK, Gelinas AD, Wuttke DS, Lundblad V (2011) Sequence-specific binding to telomeric DNA is not a conserved property of the Cdc13 DNA binding domain. Biochemistry 50(29):6289–6291. doi:10.1021/bi2005448

    Article  PubMed  CAS  Google Scholar 

  • Mantiero D, Clerici M, Lucchini G, Longhese MP (2007) Dual role for Saccharomyces cerevisiae Tel1 in the checkpoint response to double-strand breaks. EMBO Rep 8(4):380–387

    Article  PubMed  CAS  Google Scholar 

  • Marcand S, Pardo B, Gratias A, Cahun S, Callebaut I (2008) Multiple pathways inhibit NHEJ at telomeres. Genes Dev 22(9):1153–1158. doi:10.1101/gad.455108

    Article  PubMed  CAS  Google Scholar 

  • Maringele L, Lydall D (2002) EXO1-dependent single-stranded DNA at telomeres activates subsets of DNA damage and spindle checkpoint pathways in budding yeast yku70Delta mutants. Genes Dev 16(15):1919–1933

    Article  PubMed  CAS  Google Scholar 

  • Mimitou EP, Symington LS (2008) Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing. Nature 455(7214):770–774. doi:10.1038/nature07312

    Article  PubMed  CAS  Google Scholar 

  • Mimitou EP, Symington LS (2009) DNA end resection: many nucleases make light work. DNA Repair (Amst) 8(9):983–995. doi:10.1016/j.dnarep.2009.04.017

    Article  CAS  Google Scholar 

  • Mimitou EP, Symington LS (2010) Ku prevents Exo1 and Sgs1-dependent resection of DNA ends in the absence of a functional MRX complex or Sae2. EMBO J 29(19):3358–3369. doi:10.1038/emboj.2010.193

    Article  PubMed  CAS  Google Scholar 

  • Minamino T, Orimo M, Shimizu I, Kunieda T, Yokoyama M, Ito T, Nojima A, Nabetani A, Oike Y, Matsubara H, Ishikawa F, Komuro I (2009) A crucial role for adipose tissue p53 in the regulation of insulin resistance. Nat Med 15(9):1082–1087. doi:10.1038/nm.2014

    Article  PubMed  CAS  Google Scholar 

  • Mitchell JR, Wood E, Collins K (1999) A telomerase component is defective in the human disease dyskeratosis congenita. Nature 402(6761):551–555. doi:10.1038/990141

    Article  PubMed  CAS  Google Scholar 

  • Miyake Y, Nakamura M, Nabetani A, Shimamura S, Tamura M, Yonehara S, Saito M, Ishikawa F (2009) RPA-like mammalian Ctc1–Stn1–Ten1 complex binds to single-stranded DNA and protects telomeres independently of the Pot1 pathway. Mol Cell 36(2):193–206. doi:10.1016/j.molcel.2009.08.009

    Article  PubMed  CAS  Google Scholar 

  • Miyoshi T, Kanoh J, Saito M, Ishikawa F (2008) Fission yeast Pot1–Tpp 1 protects telomeres and regulates telomere length. Science 320(5881):1341–1344. doi:10.1126/science.1154819

    Article  PubMed  CAS  Google Scholar 

  • Nakada D, Matsumoto K, Sugimoto K (2003) ATM-related Tel1 associates with double-strand breaks through an Xrs2-dependent mechanism. Genes Dev 17(16):1957–1962

    Article  PubMed  CAS  Google Scholar 

  • Navadgi-Patil VM, Burgers PM (2009) A tale of two tails: activation of DNA damage checkpoint kinase Mec1/ATR by the 9–1–1 clamp and by Dpb11/TopBP1. DNA Repair (Amst) 8(9):996–1003. doi:10.1016/j.dnarep.2009.03.011

    Article  CAS  Google Scholar 

  • Ngo HP, Lydall D (2010) Survival and growth of yeast without telomere cap** by Cdc13 in the absence of Sgs1, Exo1, and Rad9. PLoS Genet 6(8):e1001072. doi:10.1371/journal.pgen.1001072

    Article  PubMed  CAS  Google Scholar 

  • Nicolette ML, Lee K, Guo Z, Rani M, Chow JM, Lee SE, Paull TT (2010) Mre11–Rad50–Xrs2 and Sae2 promote 5' strand resection of DNA double-strand breaks. Nat Struct Mol Biol 17(12):1478–1485. doi:10.1038/nsmb.1957

    Article  PubMed  CAS  Google Scholar 

  • Nimonkar AV, Genschel J, Kinoshita E, Polaczek P, Campbell JL, Wyman C, Modrich P, Kowalczykowski SC (2011) BLM–DNA2–RPA–MRN and EXO1–BLM–RPA–MRN constitute two DNA end resection machineries for human DNA break repair. Genes Dev 25(4):350–362. doi:10.1101/gad.2003811

    Article  PubMed  CAS  Google Scholar 

  • Niu H, Chung WH, Zhu Z, Kwon Y, Zhao W, Chi P, Prakash R, Seong C, Liu D, Lu L, Ira G, Sung P (2010) Mechanism of the ATP-dependent DNA end-resection machinery from Saccharomyces cerevisiae. Nature 467(7311):108–111. doi:10.1038/nature09318

    Article  PubMed  CAS  Google Scholar 

  • Oganesian L, Karlseder J (2011) Mammalian 5′ C-rich telomeric overhangs are a mark of recombination-dependent telomere maintenance. Molecular cell 42(2):224–236. doi:10.1016/j.molcel.2011.03.015

    Article  PubMed  CAS  Google Scholar 

  • Ohki R, Ishikawa F (2004) Telomere-bound TRF1 and TRF2 stall the replication fork at telomeric repeats. Nucleic Acids Res 32(5):1627–1637. doi:10.1093/nar/gkh309

    Article  PubMed  CAS  Google Scholar 

  • Olovnikov AM (1971) Principle of marginotomy in template synthesis of polynucleotides. Dokl Akad Nauk SSSR 201(6):1496–1499

    PubMed  CAS  Google Scholar 

  • Paeschke K, Capra JA, Zakian VA (2011) DNA replication through G-quadruplex motifs is promoted by the Saccharomyces cerevisiae Pif1 DNA helicase. Cell 145(5):678–691. doi:10.1016/j.cell.2011.04.015

    Article  PubMed  CAS  Google Scholar 

  • Palm W, Hockemeyer D, Kibe T, de Lange T (2009) Functional dissection of human and mouse POT1 proteins. Mol Cell Biol 29(2):471–482. doi:10.1128/MCB.01352-08

    Article  PubMed  CAS  Google Scholar 

  • Pardo B, Marcand S (2005) Rap1 prevents telomere fusions by nonhomologous end joining. EMBO J 24(17):3117–3127. doi:10.1038/sj.emboj.7600778

    Article  PubMed  CAS  Google Scholar 

  • Pfander B, Diffley JF (2011) Dpb11 coordinates Mec1 kinase activation with cell cycle-regulated Rad9 recruitment. EMBO J. doi:10.1038/emboj.2011.345

  • Pike JE, Burgers PM, Campbell JL, Bambara RA (2009) Pif1 helicase lengthens some Okazaki fragment flaps necessitating Dna2 nuclease/helicase action in the two-nuclease processing pathway. J Biol Chem 284(37):25170–25180. doi:10.1074/jbc.M109.023325

    Article  PubMed  CAS  Google Scholar 

  • Pitt CW, Cooper JP (2010) Pot1 inactivation leads to rampant telomere resection and loss in one cell cycle. Nucleic Acids Res. doi:10.1093/nar/gkq580

  • Polotnianka RM, Li J, Lustig AJ (1998) The yeast Ku heterodimer is essential for protection of the telomere against nucleolytic and recombinational activities. Curr Biol 8(14):831–834

    Article  PubMed  CAS  Google Scholar 

  • Ribeyre C, Lopes J, Boule JB, Piazza A, Guedin A, Zakian VA, Mergny JL, Nicolas A (2009) The yeast Pif1 helicase prevents genomic instability caused by G-quadruplex-forming CEB1 sequences in vivo. PLoS Genet 5(5):e1000475. doi:10.1371/journal.pgen.1000475

    Article  PubMed  CAS  Google Scholar 

  • Samper E, Goytisolo FA, Slijepcevic P, van Buul PP, Blasco MA (2000) Mammalian Ku86 protein prevents telomeric fusions independently of the length of TTAGGG repeats and the G-strand overhang. EMBO Rep 1(3):244–252. doi:10.1093/embo-reports/kvd051

    Article  PubMed  CAS  Google Scholar 

  • Sanchez Y, Bachant J, Wang H, Hu F, Liu D, Tetzlaff M, Elledge SJ (1999) Control of the DNA damage checkpoint by chk1 and rad53 protein kinases through distinct mechanisms. Science 286(5442):1166–1171

    Article  PubMed  CAS  Google Scholar 

  • Sandell LL, Zakian VA (1993) Loss of a yeast telomere: arrest, recovery, and chromosome loss. Cell 75(4):729–739

    Article  PubMed  CAS  Google Scholar 

  • Sartori AA, Lukas C, Coates J, Mistrik M, Fu S, Bartek J, Baer R, Lukas J, Jackson SP (2007) Human CtIP promotes DNA end resection. Nature 450(7169):509–514. doi:10.1038/nature06337

    Article  PubMed  CAS  Google Scholar 

  • Segurado M, Diffley JF (2008) Separate roles for the DNA damage checkpoint protein kinases in stabilizing DNA replication forks. Genes Dev 22(13):1816–1827. doi:10.1101/gad.477208

    Article  PubMed  CAS  Google Scholar 

  • Sfeir A, Kosiyatrakul ST, Hockemeyer D, MacRae SL, Karlseder J, Schildkraut CL, de Lange T (2009) Mammalian telomeres resemble fragile sites and require TRF1 for efficient replication. Cell 138(1):90–103. doi:10.1016/j.cell.2009.06.021

    Article  PubMed  CAS  Google Scholar 

  • Sfeir A, Kabir S, van Overbeek M, Celli GB, de Lange T (2010) Loss of Rap1 induces telomere recombination in the absence of NHEJ or a DNA damage signal. Science 327(5973):1657–1661. doi:10.1126/science.1185100

    Article  PubMed  CAS  Google Scholar 

  • Shampay J, Blackburn EH (1988) Generation of telomere-length heterogeneity in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 85(2):534–538

    Article  PubMed  CAS  Google Scholar 

  • Shore D, Nasmyth K (1987) Purification and cloning of a DNA binding protein from yeast that binds to both silencer and activator elements. Cell 51(5):721–732

    Article  PubMed  CAS  Google Scholar 

  • Stansel RM, de Lange T, Griffith JD (2001) T-loop assembly in vitro involves binding of TRF2 near the 3′ telomeric overhang. EMBO J 20(19):5532–5540. doi:10.1093/emboj/20.19.5532

    Article  PubMed  CAS  Google Scholar 

  • Sun Z, Hsiao J, Fay DS, Stern DF (1998) Rad53 FHA domain associated with phosphorylated Rad9 in the DNA damage checkpoint. Science 281(5374):272–274

    Article  PubMed  CAS  Google Scholar 

  • Surovtseva YV, Churikov D, Boltz KA, Song X, Lamb JC, Warrington R, Leehy K, Heacock M, Price CM, Shippen DE (2009) Conserved telomere maintenance component 1 interacts with STN1 and maintains chromosome ends in higher eukaryotes. Mol Cell 36(2):207–218. doi:10.1016/j.molcel.2009.09.017

    Article  PubMed  CAS  Google Scholar 

  • Takai H, Smogorzewska A, de Lange T (2003) DNA damage foci at dysfunctional telomeres. Curr Biol 13(17):1549–1556

    Article  PubMed  CAS  Google Scholar 

  • Teo SH, Jackson SP (2001) Telomerase subunit overexpression suppresses telomere-specific checkpoint activation in the yeast yku80 mutant. EMBO Rep 2(3):197–202. doi:10.1093/embo-reports/kve038

    Article  PubMed  CAS  Google Scholar 

  • Torres JZ, Schnakenberg SL, Zakian VA (2004) Saccharomyces cerevisiae Rrm3p DNA helicase promotes genome integrity by preventing replication fork stalling: viability of rrm3 cells requires the intra-S-phase checkpoint and fork restart activities. Mol Cell Biol 24(8):3198–3212

    Article  PubMed  CAS  Google Scholar 

  • Tsubouchi H, Ogawa H (2000) Exo1 roles for repair of DNA double-strand breaks and meiotic crossing over in Saccharomyces cerevisiae. Mol Biol Cell 11(7):2221–2233

    PubMed  CAS  Google Scholar 

  • Usui T, Ogawa H, Petrini JH (2001) A DNA damage response pathway controlled by Tel1 and the Mre11 complex. Mol Cell 7(6):1255–1266

    Article  PubMed  CAS  Google Scholar 

  • Usui T, Foster SS, Petrini JH (2009) Maintenance of the DNA-damage checkpoint requires DNA-damage-induced mediator protein oligomerization. Mol Cell 33(2):147–159. doi:10.1016/j.molcel.2008.12.022

    Article  PubMed  CAS  Google Scholar 

  • van Steensel B, de Lange T (1997) Control of telomere length by the human telomeric protein TRF1. Nature 385(6618):740–743

    Article  PubMed  Google Scholar 

  • Vega LR, Phillips JA, Thornton BR, Benanti JA, Onigbanjo MT, Toczyski DP, Zakian VA (2007) Sensitivity of yeast strains with long G-tails to levels of telomere-bound telomerase. PLoS Genet 3(6):e105. doi:10.1371/journal.pgen.0030105

    Article  PubMed  CAS  Google Scholar 

  • Venclovas C, Thelen MP (2000) Structure-based predictions of Rad1, Rad9, Hus1 and Rad17 participation in sliding clamp and clamp-loading complexes. Nucleic Acids Res 28(13):2481–2493

    Article  PubMed  CAS  Google Scholar 

  • Vodenicharov MD, Wellinger RJ (2006) DNA degradation at unprotected telomeres in yeast is regulated by the CDK1 (Cdc28/Clb) cell-cycle kinase. Mol Cell 24(1):127–137

    Article  PubMed  CAS  Google Scholar 

  • Vodenicharov MD, Laterreur N, Wellinger RJ (2010) Telomere cap** in non-dividing yeast cells requires Yku and Rap1. EMBO J:In Press. doi:10.1038/emboj.2010.155

  • Vulliamy T, Marrone A, Goldman F, Dearlove A, Bessler M, Mason PJ, Dokal I (2001) The RNA component of telomerase is mutated in autosomal dominant dyskeratosis congenita. Nature 413(6854):432–435. doi:10.1038/35096585

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Ghosh G, Hendrickson EA (2009) Ku86 represses lethal telomere deletion events in human somatic cells. Proc Natl Acad Sci U S A 106(30):12430–12435. doi:10.1073/pnas.0903362106

    Article  PubMed  CAS  Google Scholar 

  • Watson JD (1972) Origin of concatemeric T7 DNA. Nat New Biol 239(94):197–201

    PubMed  CAS  Google Scholar 

  • Wotton D, Shore D (1997) A novel Rap1p-interacting factor, Rif2p, cooperates with Rif1p to regulate telomere length in Saccharomyces cerevisiae. Genes Dev 11(6):748–760

    Article  PubMed  CAS  Google Scholar 

  • Wu L, Multani AS, He H, Cosme-Blanco W, Deng Y, Deng JM, Bachilo O, Pathak S, Tahara H, Bailey SM, Behringer RR, Chang S (2006) Pot1 deficiency initiates DNA damage checkpoint activation and aberrant homologous recombination at telomeres. Cell 126(1):49–62. doi:10.1016/j.cell.2006.05.037

    Article  PubMed  CAS  Google Scholar 

  • Wysocki R, Javaheri A, Allard S, Sha F, Cote J, Kron SJ (2005) Role of Dot1-dependent histone H3 methylation in G1 and S phase DNA damage checkpoint functions of Rad9. Mol Cell Biol 25(19):8430–8443. doi:10.1128/MCB.25.19.8430-8443.2005

    Article  PubMed  CAS  Google Scholar 

  • Ye JZ, Hockemeyer D, Krutchinsky AN, Loayza D, Hooper SM, Chait BT, de Lange T (2004) POT1-interacting protein PIP1: a telomere length regulator that recruits POT1 to the TIN2/TRF1 complex. Genes Dev 18(14):1649–1654. doi:10.1101/gad.1215404

    Article  PubMed  CAS  Google Scholar 

  • Ye J, Lenain C, Bauwens S, Rizzo A, Saint-Leger A, Poulet A, Benarroch D, Magdinier F, Morere J, Amiard S, Verhoeyen E, Britton S, Calsou P, Salles B, Bizard A et al (2010) TRF2 and Apollo cooperate with topoisomerase 2alpha to protect human telomeres from replicative damage. Cell 142(2):230–242. doi:10.1016/j.cell.2010.05.032

    Article  PubMed  CAS  Google Scholar 

  • Zhao X, Rothstein R (2002) The Dun1 checkpoint kinase phosphorylates and regulates the ribonucleotide reductase inhibitor Sml1. Proc Natl Acad Sci U S A 99(6):3746–3751. doi:10.1073/pnas.062502299

    Article  PubMed  CAS  Google Scholar 

  • Zhong Z, Shiue L, Kaplan S, de Lange T (1992) A mammalian factor that binds telomeric TTAGGG repeats in vitro. Mol Cell Biol 12(11):4834–4843

    PubMed  CAS  Google Scholar 

  • Zhou J, Monson EK, Teng SC, Schulz VP, Zakian VA (2000) Pif1p helicase, a catalytic inhibitor of telomerase in yeast. Science 289(5480):771–774

    Article  PubMed  CAS  Google Scholar 

  • Zhu Z, Chung WH, Shim EY, Lee SE, Ira G (2008) Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends. Cell 134(6):981–994. doi:10.1016/j.cell.2008.08.037

    Article  PubMed  CAS  Google Scholar 

  • Zou L, Elledge SJ (2003) Sensing DNA damage through ATRIP recognition of RPA–ssDNA complexes. Science 300(5625):1542–1548. doi:10.1126/science.1083430

    Article  PubMed  CAS  Google Scholar 

  • Zubko MK, Guillard S, Lydall D (2004) Exo1 and Rad24 differentially regulate generation of ssDNA at telomeres of Saccharomyces cerevisiae cdc13-1 mutants. Genetics 168(1):103–115

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James M. Dewar.

Additional information

Communicated by Erich Nigg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dewar, J.M., Lydall, D. Similarities and differences between “uncapped” telomeres and DNA double-strand breaks. Chromosoma 121, 117–130 (2012). https://doi.org/10.1007/s00412-011-0357-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-011-0357-2

Keywords

Navigation