Log in

The effects of re-irradiation on the chemical and morphological properties of permanent teeth

  • Research
  • Published:
Radiation and Environmental Biophysics Aims and scope Submit manuscript

Abstract

This study aimed to assess the in vitro effects of re-irradiation on enamel and dentin properties, simulating head and neck cancer radiotherapy retreatment. Forty-five human permanent molars were classified into five groups: non-irradiated; irradiated 60 Gy, and re-irradiated with doses of 30, 40, and 50 Gy. Raman spectroscopy, scanning electron microscopy (SEM), and energy dispersive x-ray spectroscopy (EDS) were employed for analysis. Raman spectroscopy assessed intensity, spectral area, and specific peaks comparatively. Statistical analysis involved Kolmogorov–Smirnov and One-Way ANOVA tests, with Tukey’s post-test (significance level set at 5%). Significant changes in irradiated, non-irradiated, and re-irradiated enamel peaks were observed, including phosphate (438 nm), hydroxyapatite (582 nm), phosphate (960 nm), and carbonate (1070 nm) (p < 0.05). Re-irradiation affected the entire tooth (p > 0.05), leading to interprismatic region degradation, enamel prism destruction, and hydroxyapatite crystal damage. Dentin exhibited tubule obliteration, crack formation, and progressive collagen fiber fragmentation. EDX revealed increased oxygen percentage and decreased phosphorus and calcium post-reirradiation. It is concluded that chemical and morphological changes in irradiated permanent teeth were dose-dependent, exacerbated by re-irradiation, causing substantial damage in enamel and dentin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The authors declare that all data supporting the findings of this study are available within the paper.

References

  • Al-Nawas B, Grotz KA, Rose E, Duschner H, Kann P, Wagner W (2000) Using ultrasound transmission velocity to analyse the mechanical properties of teeth after in vitro, in situ, and in vivo irradiation. Clin Oral Investig 4(3):168–172

    Article  Google Scholar 

  • Andrews N, Griffiths C (2001) Dental complications of head and neck radiotherapy: Part 1. Aust Dent J 46(2):88–94

    Article  Google Scholar 

  • Barsouk A, Aluru JS, Rawla P, Saginala K, Barsouk A (2023) Epidemiology, Risk Factors, and Prevention of Head and Neck Squamous Cell Carcinoma. Med Sci (basel). 11(2):42. https://doi.org/10.3390/medsci11020042

    Article  Google Scholar 

  • Bensadoun RJ, Riesenbeck D, Lockhart PB, Elting LS, Spijkervet FKL, Brennan MT et al (2010) A systematic review of trismus induced by cancer therapies in head and neck cancer patients. Support Care Cancer 18:1033–1038

    Article  Google Scholar 

  • Bessell A, Glenny AM, Furness S, Clarkson JE, Oliver R, Conway DI, Macluskey M, Pavitt S, Sloan P, Worthington HV (2011) Interventions for the treatment of oral and oropharyngeal cancers: surgical treatment. Cochrane Database of Syst Rev. 7(9):CD006205

    Google Scholar 

  • Bulucu B, Avsar A, Demiryurek EO, Yesilyurt C (2009) Effect of radiotherapy on the microleakage of adhesive systems. J Adhes Dent 11(4):305–309

    Google Scholar 

  • Campi LB, Lopes FC, Soares LES, de Queiroz AM, de Oliveira HF, Saquy PC, de Sousa-Neto MD (2019) Effect of radiotherapy on the chemical composition of root dentin. Head Neck 41(1):162–169. https://doi.org/10.1002/hed.25493

    Article  Google Scholar 

  • Celik EU, Ergücü Z, Türkün LS, Türkün M (2008) Effect of different laser devices on the composition and microhardness of dentin. Oper Dent 33(5):491–496

    Article  Google Scholar 

  • Craddock HL (2006) Treatment and maintenance of a dentate patient with ‘radiation caries.’ Dent Update 33(8):462–468

    Article  Google Scholar 

  • Devita JRVT, Lawrence TS, Rosenber S (2011) Cancer: Principles and practice of Oncology. Lippincott Williams & Wilkins, Pennsylvania

    Google Scholar 

  • Douchy L, Gauthier R, Abouelleil-Sayed H, Colon P, Grosgogeat B, Bosco J (2022) The effect of therapeutic radiation on dental enamel and dentin: a systematic review. Dent Mater 38(7):e181–e201. https://doi.org/10.1016/j.dental.2022.04.014

    Article  Google Scholar 

  • Economopoulou P, Kotsantis I, Psyrri A (2023) Editorial: Women in head and neck cancer, volume II: 2022. Front Oncol 13:1278798. https://doi.org/10.3389/fonc.2023.1278798

    Article  Google Scholar 

  • Eggmann F, Hwang JD, Ayub JM, Mante FK (2023) Impact of Irradiation on the Adhesive Performance of Resin-Based Dental Biomaterials: A Systematic Review of Laboratory Studies. Materials (basel) 16(7):2580. https://doi.org/10.3390/ma16072580

    Article  ADS  Google Scholar 

  • Epstein JB, Stevenson-Moore P (2001) Periodontal disease and periodontal management in patients with cancer. Oral Oncol 37:613–619

    Article  Google Scholar 

  • Fasano M, Della Corte CM, Viscardi G, Di Liello R, Paragliola F, Sparano F, Iacovino ML, Castrichino A, Doria F, Sica A, Morgillo F, Colella G, Tartaro G, Cappabianca S, Testa D, Motta G, Ciardiello F (2021) Head and neck cancer: the role of anti-EGFR agents in the era of immunotherapy. Ther Adv Med Oncol 9(13):1758835920949418. https://doi.org/10.1177/1758835920949418

    Article  Google Scholar 

  • Ferguson DMD, Stevens MR (2007) Advances in head and neck radiotherapy to the mandible. Oral Maxillofac Surg Clin North Am 19:553–563

    Article  Google Scholar 

  • Ferlay J (2010) Estimates of worldwide burden of cancer in 2008. GLOBOCAN 2008. Int J Cancer 127(12):2893–2917

    Article  Google Scholar 

  • Fränzel W, Gerlach R (2009) The irradiation action on human dental tissue by X-rays and electrons—a nanoindenter study. Z Med Phys 19(1):5–10

    Article  Google Scholar 

  • Gale MS, Darvel BW (1999) Thermal cycling procedures for laboratory testing of dental restorations. J Dent 27:89–99

    Article  Google Scholar 

  • García-Anaya MJ, Segado-Guillot S, Cabrera-Rodríguez J, Toledo-Serrano MD, Medina-Carmona JA, Gómez-Millán J (2023) Dose and volume de-escalation of radiotherapy in head and neck cancer. Crit Rev Oncol Hematol 186:103994. https://doi.org/10.1016/j.critrevonc.2023.103994

    Article  Google Scholar 

  • Gaudet MM (2015) Anthropometry and head and neck cancer: a pooled analysis of cohort data. Int J Epidemiol 44(2):673–683

    Article  Google Scholar 

  • Germano F, Melone P, Testi D, Arcuri L, Marmiroli L, Petrone A et al (2015) Oral complications of head and neck radiotherapy: prevalence and management. Minerva Stomatol 64(4):189–202

    Google Scholar 

  • Ghosh S, Shah PA, Johnson FM (2022) Novel systemic treatment modalities including immunotherapy and molecular targeted therapy for recurrent and metastatic head and neck squamous cell carcinoma. Int J Mol Sci 23(14):7889. https://doi.org/10.3390/ijms23147889

    Article  Google Scholar 

  • Gonçalves LMN, Palma-Dibb RG, Paula-Silva FW, Oliveira HF, Nelson-Filho P, Silva LA, Queiroz AM (2014) Radiation therapy alters micro hardness and microstructure of enamel and dentin of permanent human teeth. Journal Dent 42(8):986–992

    Article  Google Scholar 

  • Grötz KA, Duschner H, Kutzner J, Thelen M, Wagner W (1998) Histotomography studies of direct radiogenic dental enamel changes. Mund Kiefer Gesichtschir 2(2):85–90

    Article  Google Scholar 

  • Harrington K, Nutting C, Newbold K, Bhide S (2009) Principles and practice of head and neck surgery and oncology. Chapman and Hall—CRC

    Google Scholar 

  • Hong CHL, Napeñas JJ, Hodgson BD, Stokman MA, Mathers-Stauffer M, Elting LS et al (2010) A systematic review of dental disease in patients undergoing cancer therapy. Support Care Cancer 18:1007–1021

    Article  Google Scholar 

  • Hübner W, Blume A, Pushnjakova R, Dekhtyar Y, Hein HJ (2005) The influence of X-ray radiation on the mineral/organic matrix interaction of bone tissue: an FT-IR microscopic investigation. Int J Artif Organs 28(1):66–73

    Article  Google Scholar 

  • Jervoe P (1970) X-ray diffraction investigation on the effect of experimental and in situ radiation on mature human teeth. A Preliminary Report Acta Odontol Scand 28(5):623–631

    Article  Google Scholar 

  • Khaw A, Logan R, Keefe D, Bartold M (2014) Radiation-induced oral mucosites and periodontitis—proposal for inter-relationship. Oral Dis 20(3):7–18

    Article  Google Scholar 

  • Li J, Choo-Smith LP, Tang Z, Sowa MG (2010) Background removal from polarized Raman spectra of tooth enamel using the wavelet transform. J Raman Spectrosc 42(4):580–585

    Article  ADS  Google Scholar 

  • Li Q, Tie Y, Alu A, Ma X, Shi H (2023) Targeted therapy for head and neck cancer: signaling pathways and clinical studies. Signal Transduct Target Ther 8(1):31. https://doi.org/10.1038/s41392-022-01297-0

    Article  Google Scholar 

  • Lu H, Zhao Q, Guo J et al (2019) Direct radiation-induced effects on dental hard tissue. Radiat Oncol 14(1):5. https://doi.org/10.1186/s13014-019-1208-1

    Article  Google Scholar 

  • Madrid CC, de Pauli PM, Line SR et al (2017) Structural analysis of enamel in teeth from head-and-neck cancer patients who underwent radiotherapy. Caries Res 51(2):119–128. https://doi.org/10.1159/000452866

    Article  Google Scholar 

  • Mante FK, Kim A, Truong KN, Mittal K, Alapati S, Hagan S, Deng J (2022) Effect of preirradiation fluoride treatment on the physical properties of dentin. Int J Dent 17(2022):3215048. https://doi.org/10.1155/2022/3215048

    Article  Google Scholar 

  • Marangoni-Lopes L, Rovai-Pavan G, Steiner-Oliveira C, Nobre-dos-Santos M (2019) Radiotherapy reduces microhardness and mineral and organic composition and changes the morphology of primary teeth: an in vitro study. Caries Res 53(3):296–304

    Article  Google Scholar 

  • Martins CV, Leoni GB, Oliveira HF, Arid J, Queiroz AM, Silva LAB, Sousa-Neto MD (2018) Influence of therapeutic cancer radiation on the bond strength of an epoxy- or an MTA-based sealer to root dentine. Int Endod J 49(11):1065–1072

    Article  Google Scholar 

  • Mc Caul LK (2012) Oral and dental management for head and neck cancer patients treated by chemotherapy and radiotherapy. Dent Update 39:135–140

    Article  Google Scholar 

  • McGuire JD, Mousa AA, Zhang BJ, Todoki LS, Huffman NT, Chandrababu KB, Moradian Oldak J, Keightley A, Wang Y, Walker MP, Gorski JP (2014) Extracts of irradiated mature human tooth crowns contain MMP-20 protein and activity. J Dent 42(5):626–635

    Article  Google Scholar 

  • Mellara TS, Paula-Silva FWG, Arid J, de Oliveira HF, Nelson-Filho P, Bezerra Silva RA, Torres FM, Faraoni JJ, Palma-Dibb RG, de Queiroz AM (2020) Radiotherapy impairs adhesive bonding in primary teeth: an in vitro study. J Dent Child (chic) 87(2):69–76

    Google Scholar 

  • Morais-Faria K, Menegussi G, Marta G, Fernandes PM, Dias RB, Ribeiro AC, Lopes MA, Cernea CR, Brandão TB, Santos-Silva AR (2015) Dosimetric distribution to the teeth of patients with head and neck cancer who underwent radiotherapy. Oral Surg Oral Med Oral Pathol Oral Radiol 120(3):416–419

    Article  Google Scholar 

  • Müller S, Pan Y, Li R, Chi AC (2008) Changing trends in oral squamous cell carcinoma with particular reference to young patients: 1971–2006. The Emory University experience. Head Neck Pathol 2:60–66

    Article  Google Scholar 

  • Muñoz MA, Garín-Correa C, González-Arriagada W, Quintela Davila X, Häberle P, Bedran-Russo A, Luque-Martínez I (2020) The adverse effects of radiotherapy on the structure of dental hard tissues and longevity of dental restoration. Int J Radiat Biol 96(7):910–918. https://doi.org/10.1080/09553002.2020.1741718

    Article  Google Scholar 

  • Nabil S, Samman N (2011) Incidence and prevention of osteoradionecrosis after dental extraction in irradiated patients: a systematic review. Int J Oral Maxillofac Surg 40:229–243

    Article  Google Scholar 

  • Naidu MUR, Ramana GV, Rani PU, Mohan Iyyapu K, Suman A, Roy P (2004) Chemotherapy-induced and/or radiation therapy induced oral mucositis-complicating the treatment of cancer. Neoplasia 6:423–431

    Article  Google Scholar 

  • Nayak SG, Pai MS, George LS (2019) Quality of life of patients with head and neck cancer: a mixed method study. J Cancer Res Ther 15(3):638–644. https://doi.org/10.4103/jcrt.JCRT_1123_16

    Article  Google Scholar 

  • Ng JH, Iyer NG, Tan MG, Edgren G (2017) Changing epidemiology of oral squamous cell carcinoma of the tongue: a global study. Head Neck 39:297–304

    Article  Google Scholar 

  • Paleri N (2016) Introduction to the United Kingdom national multidisciplinary guidelines for head and neck cancer. J Laryngol Otol 130:S3–S4

    Article  Google Scholar 

  • Patton LL, Helgeson ES, Brennan MT, Treister NS, Sollecito TP, Schmidt BL, Lin A, Chera BS, Lalla RV (2023) Oral health-related quality of life after radiation therapy for head and neck cancer: the OraRad study. Support Care Cancer 31(5):286. https://doi.org/10.1007/s00520-023-07750-2

    Article  Google Scholar 

  • Pistoia AD, Pistoia GD, Neto MM, Hahn D, Rigodanzo L 2004 Manifestações bucais decorrentes do tratamento antineoplásico. Revista de Dentística 3(9).

  • Quah HS, Cao EY, Suteja L et al (2023) Single cell analysis in head and neck cancer reveals potential immune evasion mechanisms during early metastasis. Nat Commun 14(1):1680. https://doi.org/10.1038/s41467-023-37379-y

    Article  ADS  Google Scholar 

  • Queiroz AM, Bonilla CMC, Palma-Dibb RG et al (2019) Radiotherapy Activates and Protease Inhibitors Inactivate Matrix Metalloproteinases in the Dentinoenamel Junction of Permanent Teeth. Caries Res 53(3):253–259. https://doi.org/10.1159/000492081

    Article  Google Scholar 

  • Queiroz AM, Carpio-Bonilla CM, Arnez MFM, Dos Santos TT, Palma-Dibb RG, Oliveira HF, Nelson-Filho P, Silva LAB, Paula-Silva FWG (2020) Radiotherapy Activates Matrix Metalloproteinases in the Dentinoenamel Junction of Primary Teeth. J Dent Child (chic) 87(2):83–89

    Google Scholar 

  • Quing P (2015) Effect of gamma irradiation on the wear behavior of human tooth enamel. Sci Rep 5:11568

    Article  ADS  Google Scholar 

  • Reed R, Xu C, Liu Y, Gorski JP, Wang Y, Walker MP (2015) Radiotherapy effect on nano-mechanical properties and chemical composition of enamel and dentine. Arch Oral Biol 60(5):690–697

    Article  Google Scholar 

  • Rettig EM, D’Souza G (2015) Epidemiology of head and neck cancer. Surg Oncol Clin 24(3):379–396

    Article  Google Scholar 

  • Santin GC, Palma-Dibb RG, Romano FL, Oliveira HF, Nelson-Filho P, de Queiroz AM (2015) Physical and adhesive properties of dental enamel after radiotherapy and bonding of metal and ceramic brackets. Am J Orthod Dentofacial Orthop 148(2):283–292

    Article  Google Scholar 

  • De Siqueira MT, Palma-Dibb RG, de Oliveira HF, Garcia Paula-Silva FW, Nelson-Filho P, da Silva RA, da Silva LA, de Queiroz AM (2014) The effect of radiation therapy on the mechanical and morphological properties of the enamel and dentin of deciduous teeth—an in vitro study. Radiat Oncol 22(9):30

    Google Scholar 

  • Siripamitdul P, Sivavong P, Osathanon T et al (2023) The Effects of Radiotherapy on Microhardness and Mineral Composition of Tooth Structures. Eur J Dent 17(2):357–364. https://doi.org/10.1055/s-0042-1746414

    Article  Google Scholar 

  • Soares CJ, Castro CG, Neiva NA, Soares PV, Santos-Filho PC, Naves LZ, Pereira PN (2010) Effect of gamma irradiation on ultimate tensile strength of enamel and dentin. J Dent Res 89(2):159–164

    Article  Google Scholar 

  • Soares CJ, Neiva NA, Soares PB, Dechichi P, Novais VR, Naves LZ, Marques MR (2011) Effects of chlorhexidine and fluoride on irradiated enamel and dentin. J Dent Res 90(5):659–664

    Article  Google Scholar 

  • Springer IN, Niehoff P, Warnke PH, Böcek G, Kovács G, Suhr M, Wiltfang J, Açil Y (2005) Radiation caries–radiogenic destruction of dental collagen. Oral Oncol 41(7):723–728

    Article  Google Scholar 

  • Steel GG, McMillan TJ, Peacock JH (1989) The 5Rs of radiobiology. Int J Radiat Biol 56:1045–1048

    Article  Google Scholar 

  • Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249. https://doi.org/10.3322/caac.21660

    Article  Google Scholar 

  • Timchenko EV, Timchenko PE, Volova LT, Rosenbaum AY, Kulabukhova AY (2016) Analysis of tooth tissues using Raman spectroscopy. J Phys: Conf Ser 769:012047

    Google Scholar 

  • Toletino E, Centurion B, Ferreira L, de Souza A, Damante JH, Rubiea-Bullen IR (2011) Oral adverse effects of head and neck radiotherapy: literature review and suggestion of a clinical oral care guideline for irradiated patients. J Appl Oral Sci 19(5):448–454

    Google Scholar 

  • Vartanian JG, Gross JL, Kowalski LP (2022) Distant metastasis from head and neck cancer: role of surgical treatment. Curr Opin Otolaryngol Head Neck Surg 30(2):114–118. https://doi.org/10.1097/MOO.0000000000000789

    Article  Google Scholar 

  • Velo MMAC, Farha ALH, da Silva Santos PS, Shiota A, Sansavino SZ, Souza AT, Honório HM, Wang L (2018) Radiotherapy alters the composition, structural and mechanical properties of root dentin in vitro. Clin Oral Investig 22(8):2871–2878

    Article  Google Scholar 

  • Walker MP, Wichman B, Cheng AL, Coster J, Williams KB (2011) Impact of radiotherapy dose on dentition breakdown in head and neck cancer patients. Pract Radiat Oncol 1(3):142–148. https://doi.org/10.1016/j.prro.2011.03.003

    Article  Google Scholar 

  • World Medical Association (2013) World medical association declaration of helsinki: ethical principles for medical research involving human subjects. JAMA 310(20):2191–2194. https://doi.org/10.1001/jama.2013.281053

    Article  Google Scholar 

  • Yahyazadehfar M, Arola D (2015) The role of organic proteins on the crack growth resistance of human enamel. Acta Biomater 19:33–45

    Article  Google Scholar 

Download references

Funding

No funding was received to conduct this study.

Author information

Authors and Affiliations

Authors

Contributions

Writing—original draft, Investigation, Methodology: Thais Tedeschi dos Santos; Formal analysis, Writing—review & editing: Vicente Silva Mattos; Writing—review & editing: Kelly Fernanda Molena; Formal analysis: Francisco Wanderley Garcia de Paula-Silva; Resources: Harley Francisco de Oliveira; Formal analysis: Juliana Jendiroba Faraoni and Paulo Nelson-Filho; Supervision, Formal analysis: Jarbas Caiado de Castro Neto; Resources: Regina Guenka Palma-Dibb; Conceptualization; Writing—original draft, Supervision: Alexandra Mussolino de Queiroz.

Corresponding author

Correspondence to Kelly Fernanda Molena.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

The research was approved by the Research Ethics Committee (process no. 2018.3.091.548) for the use of extracted teeth of Biobank Human Teeth School of Dentistry of Ribeirão Preto, University of São Paulo. Consent for permanent tooth donation was given in writing by the patient.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos, T.T., Mattos, V.S., Molena, K.F. et al. The effects of re-irradiation on the chemical and morphological properties of permanent teeth. Radiat Environ Biophys 63, 283–295 (2024). https://doi.org/10.1007/s00411-024-01068-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00411-024-01068-1

Keywords

Navigation