Log in

Volatile and trace element partitioning between apatite and alkaline melts

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Apatite readily incorporates volatile and trace elements in its structure, and thus carries a record of pre-eruptive melt-fluid chemical and physical processes that play critical roles in magmatic evolution, eruption triggering, and eruptive style. However, the pressure (P), temperature (T), oxygen fugacity (fO2), and crystal-melt composition dependencies of apatite-melt elemental partition relations are only partially understood, notably for alkaline melts. Here, we report a comprehensive dataset for partitioning relations of volatiles (CO2, H2O, F, Cl, S) and 24 trace elements (including rare earth elements—REEs) between fluorapatite and phonolitic melts, based on in situ analyses of co-existing fluorapatite and melt inclusions in anorthoclase megacrystals from Erebus volcano (Antarctica). The trace monovalent cations (Li, K, Rb) have partition coefficients (\(D\)) of ≤ 0.02, lower than divalent cations (\(D\) < 0.4 for Mg, Pb, Ba, Mn; \(D\) 5 for Sr) and trivalent cations (\(D_{{\text{REE + Y}}}\) 5–30, with Nd being the most compatible REE). We use the measured trace element partition coefficients to establish a lattice-strain model for fluorapatite and alkaline melts. Based on these observations along with experimental data from the literature, we propose a general model for estimating \(D_{{\text{REE + Y}}}\) in fluorapatite and calc-alkaline/alkaline melts under a wide range of PT conditions. We also use the lattice strain model and the Eu contents of apatite and the melt to develop a new Eu-in-apatite oxybarometer. Applying it to the Erebus fluorapatite and phonolitic melts, we find that fO2 of the system was 0.5 log units below the QFM (quartz–fayalite–magnetite reaction) buffer, consistent with the low sulphur partition coefficient we determined for apatite, and with the reduced nature of the melt reported by previous studies. The melt inclusions we analysed are much drier than the calculated melt derived from apatite-melt hygrometry, implying hydrogen reequilibration in melt inclusions during magma ascent. This has implications for magma viscosity and density, and hence for the eruptive behaviour of Erebus, as well as other open-vent volcanoes. Our generalised REE lattice-strain model is widely applicable to investigations of magma differentiation and ore formation where fluorapatite is present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data underlying this article are available in the article and in its online supplementary material.

References

  • Armstrong JT (1988) Quantitative analysis of silicate and oxide minerals: comparison of Monte-Carlo, ZAF, and Phi-Rho-Z procedures. In Proc. Microbeam Analysis Society. Newbury DE (Ed). San Francisco Press, San Francisco. p. 239

  • Aster EM, Wallace PJ, Moore LR, Watkins J, Gazel E, Bodnar RJ (2016) Reconstructing CO2 concentrations in basaltic melt inclusions using Raman analysis of vapor bubbles. J Volcanol Geotherm Res 323:148–162

    Article  Google Scholar 

  • Bédard JH (2005) Partitioning coefficients between olivine and silicate melts. Lithos 83:394–419

    Article  Google Scholar 

  • Belousova EA, Griffin WL, O’Reilly SY, Fisher NI (2002) Apatite as an indicator mineral for mineral exploration: trace-element compositions and their relationship to host rock type. J Geochem Explor 76(1):45–69

    Article  Google Scholar 

  • Bernard O, Li W, Costa F, Saunders S, Itikarai I, Sindang M, Bouvet de Maisonneuve C (2022) Explosive-effusive-explosive: The role of magma ascent rates and paths in modulating caldera eruptions. Geology 50(9):1013–7

    Article  Google Scholar 

  • Blundy J, Wood B (1994) Prediction of crystal–melt partition coefficients from elastic moduli. Nature 372:452–454

    Article  Google Scholar 

  • Blundy J, Wood B (2003) Partitioning of trace elements between crystals and melts. Earth Planet Sci Lett 210:383–397

    Article  Google Scholar 

  • Boyce JW, Hervig RL (2008) Magmatic degassing histories from apatite volatile stratigraphy. Geology 36(1):63–66

    Article  Google Scholar 

  • Boyce JW, Tomlinson SM, McCubbin FM, Greenwood JP, Treiman AH (2014) The lunar apatite paradox. Science 344:400–402

    Article  Google Scholar 

  • Brice JC (1975) Some thermodynamic aspects of the growth of strained crystals. J Cryst Growth 28:249–253

    Article  Google Scholar 

  • Bromiley GD (2021) Do concentrations of Mn, Eu and Ce in apatite reliably record oxygen fugacity in magmas? Lithos 384–285:105900

    Article  Google Scholar 

  • Brophy JG, Ota T, Kunihro T, Tsujimori T, Nakamura E (2011) In situ ion-microprobe determination of trace element partition coefficients for hornblende, plagioclase, orthopyroxene, and apatite in equilibrium with natural rhyolitic glass, little glass mountain Rhyolite, California. Am Min 96(11–12):1838–1850

    Article  Google Scholar 

  • Brounce M, Boyce J, McCubbin M, Humphreys J, Reppart J, Stolper E, Eiler J (2019) The oxidation state of sulfur in lunar apatite. Am Min 104:307–312

    Article  Google Scholar 

  • Bruand E, Storey C, Fowler M (2016) An apatite for progress: Inclusions in zircon and titanite constrain petrogenesis and provenance. Geology 44(2):91–94

    Article  Google Scholar 

  • Bruand E, Fowler M, Storey C, Darling J (2017) Apatite trace element and isotope applications to petrogenesis and provenance. Am Min 102(1):75–84

    Article  Google Scholar 

  • Burgisser A, Oppenheimer C, Alletti M, Kyle PR, Scaillet B, Carroll MR (2012) Backward tracking of gas chemistry measurements at Erebus volcano. Geochem Geophys Geosyst 13:Q11010. https://doi.org/10.1029/2012GC004243

    Article  Google Scholar 

  • Burnham AD, Berry AJ, Halse HR, Schofield PF, Cibin G, Mosselmans JFW (2015) The oxidation state of europium in silicate melts as a function of oxygen fugacity, composition and temperature. Chem Geol 411:248–259

    Article  Google Scholar 

  • Carroll MR, Blank JG (1997) The solubility of H2O in phonolitic melts. Am Mineral 82(5–6):549–556

    Article  Google Scholar 

  • Chew DM, Babechuk MG, Cogné N, Mark C, O'Sullivan GJ, Henrichs IA, Doepke D, McKenna CA (2016) (LA, Q)-ICPMS trace-element analyses of Durango and McClure Mountain apatite and implications for making natural LA-ICPMS mineral standards. Chem Geol 435:35–48

    Article  Google Scholar 

  • Clark K, Zhang Y, Naab FU (2016) Quantification of CO2 concentration in apatite. Am Min 101:2443–2451

    Article  Google Scholar 

  • Comodi P, Liu Y, Zanazzi P, Montagnoli M (2001) Structural and vibrational behaviour of fluorapatite with pressure. Part I: in situ single-crystal X-ray diffraction investigation. Phys Chem Min 28:219–224

    Article  Google Scholar 

  • Demouchy S, Jacobsen SD, Gaillard F, Stern CR (2006) Rapid magma ascent recorded by water diffusion profiles in mantle olivine. Geology 34(6):429–432

    Article  Google Scholar 

  • Dohmen R, Blundy J (2014) A predictive thermodynamic model for element partitioning between plagioclase and melt as a function of pressure, temperature and composition. Am J Sci 314:1319–1372

    Article  Google Scholar 

  • Doherty AL, Webster JD, Goldoff BA, Piccoli PM (2014) Partitioning behavior of chlorine and fluorine in felsic melt–fluid (s)–apatite systems at 50 MPa and 850–950 °C. Chem Geol 384:94–111

    Article  Google Scholar 

  • Donovan JJ, Tingle TN (1996) An improved mean atomic number background correction for quantitative microanalysis. Microsc Soc Am 2:1–7

    Google Scholar 

  • Fleet ME, Pan Y (1997) Rare earth elements in apatite: uptake from H2O-bearing phosphate-fluoride melts and the role of volatile components. Geochim Cosmochim Acta 61(22):4745–4760

    Article  Google Scholar 

  • Frost BR (1991) Introduction to oxygen fugacity and its petrologic importance. Oxide minerals: petrologic and magnetic significance. In: Donald HL (Ed). De Gruyter, Berlin, Boston, pp 1–9

  • Fujimaki H (1986) Partition coefficients of Hf, Zr, and REE between zircon, apatite, and liquid. Contr Miner Petrol 94:42–45

    Article  Google Scholar 

  • Goldoff B, Webster JD, Harlov DE (2012) Characterization of fluor-chlorapatites by electron probe microanalysis with a focus on time-dependent intensity variation of halogens. Am Min 97:1103–1115

    Article  Google Scholar 

  • Harlov DE, Andersson UB, Förster H, Nyström JO, Dulski P, Broman C (2002) Apatite–monazite relations in the Kiirunavaara magnetite–apatite ore, northern Sweden. Chem Geol 191(1–3):47–72

    Article  Google Scholar 

  • Harrison TM, Watson EB (1984) The behavior of apatite during crustal anatexis: equilibrium and kinetic considerations. Geochimica et Cosmochimica Acta. 48(7):1467–1477

    Article  Google Scholar 

  • Hazen RM, Finger LW (1979) Bulk modulus—volume relationship for cation-anion polyhedra. J Geophys Res 84:6723–6728

    Article  Google Scholar 

  • Henrichs IA, O'Sullivan G, Chew DM, Mark C, Babechuk MG, McKenna C, Emo R (2018) The trace element and U-Pb systematics of metamorphic apatite. Chem Geol 483:218–238

    Article  Google Scholar 

  • Hughes JM, Crowley KD (1991) Ordering of divalent cations in the apatite structure: crystal structure refinements of natural Mn- and Sr-bearing apatite. Am Min 76:1857–1862

    Google Scholar 

  • Hughes JM, Rakovan JF (2015) Structurally robust, chemically diverse: apatite and apatite supergroup minerals. Elements 11(3):165–170

    Article  Google Scholar 

  • Humphreys MC, Smith VC, Coumans JP, Riker JM, Stock MJ, de Hoog JC, Brooker RA (2021) Rapid pre-eruptive mush reorganisation and atmospheric volatile emissions from the 12.9 ka Laacher See eruption, determined using apatite. Earth Planet Sci Lett 576:117198

    Article  Google Scholar 

  • Jochum KP, Nohl U, Herwig K, Lammel E, Stoll B, Hofmann AW (2005) GeoReM: a new geochemical database for reference materials and isotopic standards. Geostand Geoanal Res 29:333–338

    Article  Google Scholar 

  • Jochum KP, Stoll B, Herwig K, Willbold M, Hofmiann AW, Amini M, Aarburg S, Abouchami W, Hellebrand E, Mocek B, Raczek I, Stracke A, Alard O, Bouman C, Becker S, Dücking M, Brätz H, Klemd R, De Bruin D, Canil D, Cornell D, De Hoog CJ, Dalpé C, Danyushevshy L, Eisenhauer A, Gao Y, Snow JE, Groschopf N, Günther D, Latkoczy C, Guillong M, Hauri EH, Höfer HE, Lahaye Y, Horz K, Jacob DE, Kasemann SA, Kent AJR, Ludwig T, Zack T, Mason PRD, Meixner A, Rosner M, Misawa K, Nash BP, Pfänder J, Premo WR, Sun WD, Tiepolo M, Vannucci R, Vennemann T, Wayne D, Woodhead JD (2006) MPI-DING reference glasses for in situ microanalysis: new reference values for element concentrations and isotope ratios. Geochem Geophys Geosyst 7:Q02008

    Article  Google Scholar 

  • Jones RH, McCubbin FM, Dreeland L, Guan YB, Burger PV, Shearer CK (2014) Phosphate minerals in LL chondrites: a record of the action of fluids during metamorphism on ordinary chondrite parent bodies. Geochim Cosmochim Acta 132:120–140

    Article  Google Scholar 

  • Jonsson E, Harlov DE, MaJka J, Högdahl K, Persson-Nilsson K (2016) Fluorapatite-monazite-allanite relations in the Grängesberg apatite-iron oxide ore district, Bergslagen, Sweden. Am Min 101(8):1769–1782

    Article  Google Scholar 

  • Kelly PJ, Kyle PR, Dunbar NW, Sims KW (2008) Geochemistry and mineralogy of the phonolite lava lake, Erebus volcano, Antarctica: 1972–2004 and comparison with older lavas. J Volcanol Geoth Res 177(3):589–605

    Article  Google Scholar 

  • Kim Y, Konecke B, Fiege A, Simon A, Becker U (2017) An ab-initio study of the energetics and geometry of sulfide, sulfite, and sulfate incorporation into apatite: The thermodynamic basis for using this system as an oxybarometer. Am Mineral J Earth Planet Mater 102(8):1646–1656

    Article  Google Scholar 

  • Klemme S, Dalpé C (2003) Trace-element partitioning between apatite and carbonatite melt. Am Mineral 88(4):639–646

    Article  Google Scholar 

  • Konecke BA, Fiege A, Simon AC, Parat F, Stechern A (2017) Co-variability of S6+, S4+, and S2− in apatite as a function of oxidation state: Implications for a new oxybarometer. Am Min 102(3):548–557

    Article  Google Scholar 

  • Konecke BA, Fiege A, Simon AC, Linsler S, Holtz F (2019) An experimental calibration of a sulfur-in-apatite oxybarometer for mafic systems. Geochim Cosmochim Acta 265:242–258

    Article  Google Scholar 

  • Kusebauch C, John T, Whitehouse MJ, Engvik AK (2015) Apatite as probe for the halogen composition of metamorphic fluids (Bamble Sector, SE Norway). Contrib Miner Petrol 170:34

    Article  Google Scholar 

  • Le Losq C, Neuville DR, Moretti R, Kyle PR, Oppenheimer C (2015) Rheology of phonolitic magmas–the case of the Erebus lava lake. Earth Planet Sci Lett 411:53–61

    Article  Google Scholar 

  • Li W, Costa F (2020) A thermodynamic model for F-Cl-OH partitioning between silicate melts and apatite including non-ideal mixing with application to constraining melt volatile budgets. Geochim Cosmochim Acta 269:203–222

    Article  Google Scholar 

  • Li H, Hermann J (2017a) Chlorine and fluorine partitioning between apatite and sediment melt at 2.5 GPa, 800 °C: a new experimentally derived thermodynamic model. Am Min 102:580–594

    Article  Google Scholar 

  • Li H, Hermann J (2017b) The effect of fluorine and chlorine on trace element partitioning between apatite and sediment melt at subduction zone conditions. Chem Geol 473:55–73

    Article  Google Scholar 

  • Li CX, Duan YH, Hu WC (2015) Electronic structure, elastic anisotropy, thermal conductivity and optical properties of calcium apatite Ca5(PO4)3X (X=F, Cl or Br). J Alloys Compd 619:66–77

    Article  Google Scholar 

  • Li W, Chakraborty S, Nagashima K, Costa F (2020) Multicomponent diffusion of F, Cl and OH in apatite with application to magma ascent rates. Earth Planet Sci Lett 550:116545

    Article  Google Scholar 

  • Li W, Costa F, Nagashima K (2021) Apatite crystals reveal melt volatile budgets and magma storage depths at Merapi volcano, Indonesia. J Petrol 62(4):egaa100

    Article  Google Scholar 

  • Luo Y, Hughes JM, Rakovan J, Pan Y (2009) Site preference of U and Th in Cl, F, and Sr apatites. Am Min 94:345–351

    Article  Google Scholar 

  • Luhr JF, Carmichael IS, Varekamp JC (1984) The 1982 eruptions of El Chichón Volcano, Chiapas, Mexico: mineralogy and petrology of the anhydritebearing pumices. J Volcanol Geoth Res 23(1–2):69–108

    Article  Google Scholar 

  • Mathez EA, Webster JD (2005) Partitioning behavior of chlorine and fluorine in the system apatite-silicate melt-fluid. Geochimica et Cosmochimica Acta 69(5):1275–1286

    Article  Google Scholar 

  • McCubbin FM, Ustunisik G (2018) Experimental investigation of F and Cl partitioning between apatite and Fe-rich basaltic melt at 0 GPa and 950–1050 °C: evidence for steric controls on apatite-melt exchange equilibria in OH-poor apatite. Am Min 103:1455–1467

    Article  Google Scholar 

  • McCubbin FM, Hauri EH, Elardo SM, Vander Kaaden KE, Wang J, Shearer CK (2012) Hydrous melting of the martian mantle produced both depleted and enriched shergottites. Geology 40:683–686

    Article  Google Scholar 

  • McCubbin FM, Vander Kaaden KE, Tartèse R, Boyce JW, Mikhail S, Whitson ES, Bell AS, Anand M, Franchi IA, Wang J, Hauri EH (2015) Experimental investigation of F, Cl, and OH partitioning between apatite and Fe-rich basaltic melt at 1.0-1.2 GPa and 950–1000 °C. Am Min 100:1790–1802

    Article  Google Scholar 

  • McDonough WF, Sun S-S (1995) The composition of the earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • Miles AJ, Graham CM, Hawkesworth CJ, Gillespie MR, Hinton RW, Bromiley GD (2014) Apatite: a new redox proxy for silicic magmas? Geochim Cosmochim Acta 132:101–119

    Article  Google Scholar 

  • Mollo S, Blundy J, Scarlato P, Vetere F, Holtz F, Bachmann O, Gaeta M (2020) A review of the lattice strain and electrostatic effects on trace element partitioning between clinopyroxene and melt: applications to magmatic systems saturated with Tschermak-rich clinopyroxenes. Earth-Sci Rev 210:103351

    Article  Google Scholar 

  • Moore LR, Gazel E, Tuohy R, Lloyd AS, Epsosito R, Steele-MacInnis MJ, Hauri EH, Wallace PJ, Plank T, Bodnar RJ (2015) Bubbles matter: an assessment of the contribution of vapor bubbles to melt inclusion volatile budgets. Am Miner 100:806–823

    Article  Google Scholar 

  • Morgan GB, London D (1996) Optimizing the electron microprobe analysis of hydrous alkali aluminosilicate glasses. Am Min 81(9–10):1176–1185

    Article  Google Scholar 

  • Moussallam Y, Oppenheimer C, Aiuppa A, Giudice G, Moussallam M, Kyle P (2012) Hydrogen emissions from Erebus volcano, Antarctica. Bull Volcanol 74(9):2109–2120

    Article  Google Scholar 

  • Moussallam Y, Oppenheimer C, Scaillet B, Kyle PR (2013) Experimental phase-equilibrium constraints on the phonolite magmatic system of Erebus volcano, Antarctica. J Petrol 54(7):1285–1307

    Article  Google Scholar 

  • Moussallam Y, Oppenheimer C, Scaillet B, Gaillard F, Kyle P, Peters N, Hartley M, Berlo K, Donovan A (2014) Tracking the changing oxidation state of Erebus magmas, from mantle to surface, driven by magma ascent and degassing. Earth Planet Sci Lett 393:200–209

    Article  Google Scholar 

  • Moussallam Y, Oppenheimer C, Scaillet B, Buisman I, Kimball C, Dunbar N, Burgisser A, Schipper CI, Andújar J, Kyle PR (2015) Megacrystals track magma convection between reservoir and surface. Earth Planet Sci Lett 413:1–12

    Article  Google Scholar 

  • Nagasawa H (1970) Rare earth concentrations in zircons and apatites and their host dacites and granites. Earth Planet Sci Lett 9(4):359–364

    Article  Google Scholar 

  • Nathwani CL, Loader MA, Wilkinson JJ, Buret Y, Sievwright RH, Hollings P (2020) Multi-stage arc magma evolution recorded by apatite in volcanic rocks. Geology 48(4):323–327

    Article  Google Scholar 

  • Newman S, Lowenstern JB (2002) VolatileCalc: a silicate melt–H2O–CO2 solution model written in visual basic for excel. Comput Geosci 28(5):597–604

    Article  Google Scholar 

  • Onuma N, Higuchi H, Wakita H, Nagasawa H (1968) Trace element partition between two pyroxenes and the host lava. Earth Planet Sci Lett 5:47–51

    Article  Google Scholar 

  • Oppenheimer C, Moretti R, Kyle PR, Eschenbacher A, Lowenstern JB, Hervig RL, Dunbar NW (2011) Mantle to surface degassing of alkalic magmas at Erebus volcano, Antarctica. Earth Planet Sci Lett 306(3–4):261–271

    Article  Google Scholar 

  • Padilla AJ, Gualda GAR (2016) Crystal-melt elemental partitioning in silicic magmatic systems: an example from the peach spring tuff high-silica rhyolite, Southwest USA. Chem Geol 440:326–344

    Article  Google Scholar 

  • Pan Y, Fleet ME (2002) Compositions of the apatite-group minerals: substitution mechanisms and controlling factors. Rev Miner Geochem 48:13–49

    Article  Google Scholar 

  • Papale P, Moretti R, Barbato D (2006) The compositional dependence of the saturation surface of H2O + CO2 fluids in silicate melts. Chem Geol 229:78–95

    Article  Google Scholar 

  • Parat F, Holtz F (2004) Sulfur partitioning between apatite and melt and effect of sulfur on apatite solubility at oxidizing conditions. Contrib Miner Petrol 147:201–212

    Article  Google Scholar 

  • Parat F, Holtz F (2005) Sulphur partition coefficient between apatite and rhyolite: the role of bulk S content. Contrib Miner Petrol 150:643–651

    Article  Google Scholar 

  • Paton C, Hellstrom J, Paul B, Woodhead J, Hergt J (2011) Iolite: freeware for the visualisation and processing of mass spectrometric data. J Anal Spectrom 26:2508

    Article  Google Scholar 

  • Paul B, Paton C, Norris A, Woodhead J, Hellstrom J, Hergt J, Greig A (2012) Cell space: a module for creating spatially registered laser ablation images within the Iolite freeware environment. J Anal at Spectrom 27:700–706

    Article  Google Scholar 

  • Peng G, Luhr JF, McGee JJ (1997) Factors controlling sulfur concentrations in volcanic apatite. Am Min 82:1210–1224

    Article  Google Scholar 

  • Peters N, Oppenheimer C, Killingsworth DR, Frechette J, Kyle P (2014) Correlation of cycles in Lava Lake motion and degassing at Erebus Volcano, Antarctica. Geochem Geophys Geosyst 15:3244–3257

    Article  Google Scholar 

  • Prowatke S, Klemme S (2006) Trace element partitioning between apatite and silicate melts. Geochim Cosmochim Acta 70:4513–4527

    Article  Google Scholar 

  • Rakovan J, Newville M, Sutton S (2001) Evidence of heterovalent europium in zoned Llallagua apatite using wavelength dispersive XANES. Am Min 86(5–6):697–700

    Article  Google Scholar 

  • Riker J, Humphreys MCS, Brooker RA, De Hoog JCM, Eim F (2018) First measurements of OH-C exchange and temperature-dependent partitioning of OH and halogens in the system apatite-silicate melt. Am Min 103:260–270

    Article  Google Scholar 

  • Sano Y, Terada K, Fukuoka T (2002) High mass resolution ion microprobe analysis of rare earth elements in silicate glass, apatite and zircon: lack of matrix dependency. Chem Geol 184(3–4):217–230

    Article  Google Scholar 

  • Sauerzapf U, Lattard D, Burchard M, Engelmann R (2008) The titanomagnetite-ilmenite equilibrium: new experimental data and thermo-oxybarometric application to the crystallization of basic to intermediate rocks. J Petrol 49(6):1161–1185

    Article  Google Scholar 

  • Schettler G, Gottschalk M, Harlov DE (2011) A new semi-micro wet chemical method for apatite analysis and its application to the crystal chemistry of fluorapatite-chlorapatite solid solutions. Am Min 96:138–152

    Article  Google Scholar 

  • Schmidt MW, Connolly JAD, Günther D, Bogaerts M (2006) Element partitioning: the role of melt structure and composition. Science 312:1646–1650

    Article  Google Scholar 

  • Seaman SJ, Dyar MD, Marinkovic N, Dunbar NW (2006) An FTIR study of hydrogen in anorthoclase and associated melt inclusions. Am Mineral 91(1):12–20

    Article  Google Scholar 

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A32:751–767

    Article  Google Scholar 

  • Shimizu K, Ushikubo T, Hamada M, Ito S, Higashi Y, Takahashi E, Ito M (2017) H2O, CO2, F, S, Cl, and P2O5 analyses of silicate glasses using SIMS: Report of volatile standard glasses. Geochem J 51(4):299–313

    Article  Google Scholar 

  • Stock MJ, Humphreys MCS, Smith VC, Johnson RD, Pyle DM (2015) New constraints on electron-beam induced halogen migration in apatite. Am Min 100:281–293

    Article  Google Scholar 

  • Stock MJ, Humphreys M, Smith VC, Isaia R, Pyle DM (2016) Late-stage volatile saturation as a potential trigger for explosive volcanic eruptions. Nat Geosci 9(3):249–254

    Article  Google Scholar 

  • Stock MJ, Humphreys MC, Smith VC, Isaia R, Brooker RA, Pyle DM (2018) Tracking volatile behaviour in sub-volcanic plumbing systems using apatite and glass: insights into pre-eruptive processes at Campi Flegrei, Italy. J Petrol 59(12):2463–2492

    Article  Google Scholar 

  • Stokes TN, Bromiley GD, Potts NJ, Saunders KE, Miles AJ (2019) The effect of melt composition and oxygen fugacity on manganese partitioning between apatite and silicate melt. Chem Geol 506:162–174

    Article  Google Scholar 

  • Stolper E (1982) The speciation of water in silicate melts. Geochim et Cosmochim Acta 46(12):2609–2620

    Article  Google Scholar 

  • Stormer J, Pierson ML, Tacker RC (1993) Variation of F and Cl X-ray intensity due to anisotropic diffusion in apatite. Am Min 78:641–648

    Google Scholar 

  • Sun C, Graff M, Liang Y (2017) Trace element partitioning between plagioclase and silicate melt: the importance of temperature and plagioclase composition, with implications for terrestrial and lunar magmatism. Geochim Cosmochim Acta 206:273–295

    Article  Google Scholar 

  • Tang M, Erdman M, Eldridge G, Lee C-TA (2018) The redox “filter” beneath magmatic orogens and the formation of continental crust. Sci Adv 4:eaar4444

    Article  Google Scholar 

  • Venugopal S, Schiavi F, Moune S, Bolfan-Casanova N, Druitt T, Williams-Jones G (2020) Melt inclusion vapour bubbles: the hidden reservoir for major and volatile elements. Sci Rep 10:9034

    Article  Google Scholar 

  • Vermeesch P (2018) IsoplotR: a free and open toolbox for geochronology. Geosci Front 9(5):1479–1493

    Article  Google Scholar 

  • Watson EB, Green TH (1981) Apatite/liquid partition coefficients for the rare earth elements and strontium. Earth Planet Sci Lett 56:405–421

    Article  Google Scholar 

  • Webster JD, Piccoli PM (2015) Magmatic apatite: a powerful, yet deceptive, mineral. Elements 11(3):177–182

    Article  Google Scholar 

  • Webster JD, Tappen CM, Mandeville CW (2009) Partitioning behavior of chlorine and fluorine in the system apatite–melt–fluid. II: Felsic silicate systems at 200 MPa. Geochimica et Cosmochimica Acta 73(3):559–581

    Article  Google Scholar 

  • Wood B, Blundy J (1997) A predictive model for rare earth element partitioning between clinopyroxene and anhydrous silicate melt. Contrib Miner Petrol 129:166–181

    Article  Google Scholar 

  • Woodhead JD, Hellstrom J, Hergt JM, Greig A, Maas R (2007) Isotopic and elemental imaging of geological materials by laser ablation inductively coupled plasma-mass spectrometry. Geostand Geoanalytical Res 31:331–343

    Google Scholar 

  • Yang Q, Pitman EB, Bursik M, Jenkins S (2021) Tephra deposit inversion by couplying Tephra2 with the Metropolis-Hastings algorithm: algorithm introduction and demonstration with synthetic datasets. J Appl Volcanol 10:1

    Article  Google Scholar 

Download references

Acknowledgements

W. Li acknowledges P. Kyle for providing a reference glass from Erebus, J.A. Oalmann for support during LA-ICP-MS analysis, and Q. Yang for discussions on the MCMC algorithm. We thank M. Stock for his comments which significantly improved the manuscript and T. Grove for efficient editorial handling. This study was funded by the Earth Observatory of Singapore (EOS—contribution number 377) and the Singapore Ministry of Education under the Research Centres of Excellence initiative and the National Research Foundation Singapore (NRF-NRFI2017-06). C. Oppenheimer acknowledges support from the U.S. National Science Foundation (Division of Polar Programs) under grant ANT1142083. The authors have no competing interests to declare that are relevant to the content of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiran Li.

Additional information

Communicated by Timothy L. Grove.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Costa, F., Oppenheimer, C. et al. Volatile and trace element partitioning between apatite and alkaline melts. Contrib Mineral Petrol 178, 9 (2023). https://doi.org/10.1007/s00410-022-01985-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-022-01985-8

Keywords

Navigation