Log in

Multi-stage melt impregnation and magma–seawater interaction in a slow-spreading oceanic lithosphere: constraints from cumulates in the Lagkorco ophiolite (central Tibet)

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Although seismic and hydrothermal data show evidence of magma–seawater interaction in slow spreading-rate ridges, such a process has been rarely observed in situ in lower oceanic crust. In this study, we reported petrological and mineral data on the plutonic rocks from the lower oceanic crust of the Lagkorco ophiolite from central Tibet, which shows geological and petrological features indicative of a slow-spreading ridge origin. Both troctolites and gabbros were derived from depleted magmas containing 0.5–1.0 wt.% H2O. Petrology and geochemistry indicate that troctolites have experienced two stages of melt impregnation: (1) early, water-poor melt impregnation in a dunitic matrix and (2) late, hydrous melt impregnation in a troctolitic matrix. Stage (1) generated oikocrysts of clinopyroxene and plagioclase within an olivine-rich matrix, while stage (2) formed brown amphibole. The high Cl (up to 0.25 wt%) contents of the brown amphibole and the fast cooling of the troctolites (~ 0.1 °C/year) suggest that stage (2) melt impregnation was associated with the hydration of the intercumulus melts by seawater infiltration. Together with the strong arc affinities of basalts, we suggest that Lagkorco ophiolite was formed at a nascent, slow-spreading back-arc basin with a fault-controlled crustal accretion. The deep-rooted faults may provide the channels for the downward seawater infiltration into the hot, impregnation zone near the crust–mantle transition zone. This study provides an example of seawater–magma interaction in the nascent back-arc lower oceanic crust with implications for the interplay among tectonic, hydrothermal, and magmatic processes at the slow-spreading ridges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability statement

All data generated during this study are included in this published article (and its supplementary information files).

References

  • Abily B, Ceuleneer G, Launeau P (2011) Synmagmatic normal faulting in the lower oceanic crust: evidence from the oman ophiolite. Geology 39(4):391–394. https://doi.org/10.1130/g31652.1

    Article  Google Scholar 

  • Aigner-Torres M, Blundy J, Ulmer P, Pettke T (2007) Laser ablation ICPMS study of trace element partitioning between plagioclase and basaltic melts: an experimental approach. Contrib Miner Petrol 153(6):647–667. https://doi.org/10.1007/s00410-006-0168-2

    Article  Google Scholar 

  • Anonymous (1972) Penrose field conference on ophiolites. Geotimes 17(12):24–25

    Google Scholar 

  • Arai S, Matsukage K, Isobe E, Vysotskiy S (1997) Concentration of incompatible elements in oceanic mantle: effect of melt/wall interaction in stagnant or failed melt conduits within peridotite. Geochim Cosmochim Acta 61(3):671–675. https://doi.org/10.1016/S0016-7037(96)00389-4

    Article  Google Scholar 

  • Bach W, Früh-Green GL (2010) Alteration of the oceanic lithosphere and implications for seafloor processes. Elements 6(3):173–178. https://doi.org/10.2113/gselements.6.3.173

    Article  Google Scholar 

  • Basch V, Rampone E, Crispini L, Ferrando C, Ildefonse B, Godard M (2019) Multi-stage reactive formation of troctolites in slow-spreading oceanic lithosphere (Erro–Tobbio, Italy): a combined field and petrochemical study. J Petrol 60(5):873–906. https://doi.org/10.1093/petrology/egz019

    Article  Google Scholar 

  • Basch V, Sanfilippo A, Sani C, Ohara Y, Snow J, Ishizuka O, Harigane Y, Michibayashi K, Sen A, Akizawa N, Okino K, Fujii M, Yamashita H (2020) Crustal accretion in a slow spreading back-arc basin: insights from the mado megamullion oceanic core complex in the shikoku basin. Geochem, Geophys, Geosyst 21(11):e2020GC009199. https://doi.org/10.1029/2020GC009199

    Article  Google Scholar 

  • Basch V, Sanfilippo A, Skolotnev SG, Ferrando C, Muccini F, Palmiotto C, Peyve AA, Ermolaev BV, Okina OI, Ligi M (2022) Genesis of oceanic oxide gabbros and gabbronorites during reactive melt migration at transform walls (Doldrums Megatransform System; 7–8°N Mid-Atlantic Ridge). J Petrol. https://doi.org/10.1093/petrology/egac086

    Article  Google Scholar 

  • Bédard JH (2001) Parental magmas of the Nain Plutonic Suite anorthosites and mafic cumulates: a trace element modelling approach. Contrib Miner Petrol 141(6):747–771. https://doi.org/10.1007/s004100100268

    Article  Google Scholar 

  • Bédard JH (2010) Parameterization of the Fe-Mg exchange coefficient (Kd) between clinopyroxene and silicate melts. Chem Geol 274(3):169–176. https://doi.org/10.1016/j.chemgeo.2010.04.003

    Article  Google Scholar 

  • Berndt J, Koepke J, Holtz F (2005) An experimental investigation of the influence of water and oxygen fugacity on differentiation of MORB at 200 MPa. J Petrol 46(1):135–167

    Article  Google Scholar 

  • Blackman DK, Ildefonse B, John BE, Ohara Y, Miller DJ, MacLeod CJ, Scientists atE (2006) Site U1309 Proc. IODP, 304/305. In: Blackman DK, Ildefonse B, John BE, Ohara Y, Miller DJ, MacLeod CJ (eds) and the Expedition 304/305 Scientists College Station TX. Integrated Ocean Drilling Program Management International, Inc. https://doi.org/10.2204/iodp.proc.304305.103.2006

    Chapter  Google Scholar 

  • Borghini G, Francomme JE, Fumagalli P (2018) Melt–dunite interactions at 0.5 and 0.7 GPa: experimental constraints on the origin of olivine-rich troctolites. Lithos 323:44–57. https://doi.org/10.1016/j.lithos.2018.09.022

    Article  Google Scholar 

  • Brunelli D, Sanfilippo A, Bonatti E, Skolotnev S, Escartin J, Ligi M, Ballabio G, Cipriani A (2020) Origin of oceanic ferrodiorites by injection of nelsonitic melts in gabbros at the vema lithospheric section. Mid Atlantic Ridge Lithos 368–369:105589. https://doi.org/10.1016/j.lithos.2020.105589

    Article  Google Scholar 

  • Buck WR, Lavier LL, Poliakov ANB (2005) Modes of faulting at mid-ocean ridges. Nature 434(7034):719–723. https://doi.org/10.1038/nature03358

    Article  Google Scholar 

  • Cannat M, Rommevaux-Jestin C, Fujimoto H (2003) Melt supply variations to a magma-poor ultra-slow spreading ridge (Southwest Indian Ridge 61° to 69°E). Geochem Geophys Geosyst. https://doi.org/10.1029/2002GC000480

    Article  Google Scholar 

  • Chen Y, Niu Y, Xue Q, Gao Y, Castillo P (2021) An iron isotope perspective on back-arc basin development: messages from mariana trough basalts. Earth Planet Sci Lett 572:117133. https://doi.org/10.1016/j.epsl.2021.117133

    Article  Google Scholar 

  • Collier ML, Kelemen PB (2010) The case for reactive crystallization at mid-ocean ridges. J Petrol 51(9):1913–1940

    Article  Google Scholar 

  • Coogan LA (2014) 4.14 - The Lower Oceanic Crust. In: Turekian KK (ed) Treatise on geochemistry (Second Edition). Elsevier, Oxford, pp 497–541

    Chapter  Google Scholar 

  • Coogan LA, Saunders AD, Kempton PD, Norry MJ (2000) Evidence from oceanic gabbros for porous melt migration within a crystal mush beneath the Mid-Atlantic Ridge. Geochem, Geophys, Geosyst. https://doi.org/10.1029/2000GC000072

    Article  Google Scholar 

  • Coogan LA, Wilson RN, Gillis KM, Macleod CJ (2001) Near-solidus evolution of oceanic gabbros: insights from amphibole geochemistry. Geochim Cosmochim Acta 65(23):4339-4357 x

    Article  Google Scholar 

  • Coogan LA, Jenkin GRT, Wilson RN (2007) Contrasting cooling rates in the lower oceanic crust at fast- and slow-spreading ridges revealed by geospeedometry. J Petrol 48(11):2211–2231

    Article  Google Scholar 

  • DePaolo DJ (1981) Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth Planet Sci Lett 53(2):189–202. https://doi.org/10.1016/0012-821X(81)90153-9

    Article  Google Scholar 

  • Dick HJB, Ozawa K, Meyer PS, Niu Y, Robinson PT, Constantin M, Hebert R, Maeda J, Natland JH, Hirth G, Mackie S (2002) Primary silicate mineral chemistry of a 15-km section of very slow spreading lower ocean crust ODP Hole 735B, Southwest Indian Ridge. In: Natland JH, Dick HJB, Miler DJ, Von Herzen R (eds) Proceedings of the ocean drilling program, scientific results, vol 176. Ocean Drilling Program, College Station, TX, United States, pp 1–61

    Google Scholar 

  • Dick HJB, Tivey MA, Tucholke BE (2008) Plutonic foundation of a slow-spreading ridge segment: Oceanic core complex at Kane Megamullion, 23°30′N, 45°20′W. Geochem Geophys Geosyst. https://doi.org/10.1029/2007GC001645

    Article  Google Scholar 

  • Dick HJB, Lissenberg CJ, Warren JM (2010) Mantle melting, melt transport, and delivery beneath a slow-spreading ridge: the paleo-MAR from 23°15′N to 23°45′N. J Petrol 51(1–2):425–467. https://doi.org/10.1093/petrology/egp088

    Article  Google Scholar 

  • Drouin M, Godard M, Ildefonse B, Bruguier O, Garrido CJ (2009) Geochemical and petrographic evidence for magmatic impregnation in the oceanic lithosphere at Atlantis Massif, Mid-Atlantic Ridge (IODP Hole U1309D, 30°N). Chem Geol 264(1–4):71–88. https://doi.org/10.1016/j.chemgeo.2009.02.013

    Article  Google Scholar 

  • Elthon D, Casey JF, Komor S (1982) Mineral chemistry of ultramafic cumulates from the North Arm Mountain Massif of the Bay of Islands ophiolite: Evidence for high-pressure crystal fractionation of oceanic basalts. J Geophys Res Solid Earth 87(B10):8717–8734

    Article  Google Scholar 

  • Escartín J, Canales JP (2011) Detachments in oceanic lithosphere: deformation, magmatism, fluid flow, and ecosystems. EOS Trans Am Geophys Union 92(4):31–31. https://doi.org/10.1029/2011EO040003

    Article  Google Scholar 

  • Feig ST, Koepke J, Snow JE (2006) Effect of water on tholeiitic basalt phase equilibria: an experimental study under oxidizing conditions. Contrib Miner Petrol 152(5):611–638. https://doi.org/10.1007/s00410-006-0123-2

    Article  Google Scholar 

  • Feig ST, Koepke J, Snow JE (2010) Effect of oxygen fugacity and water on phase equilibria of a hydrous tholeiitic basalt. Contrib Miner Petrol 160(4):551–568. https://doi.org/10.1007/s00410-010-0493-3

    Article  Google Scholar 

  • Ferrando C, Godard M, Ildefonse B, Rampone E (2018) Melt transport and mantle assimilation at Atlantis Massif (IODP Site U1309): constraints from geochemical modeling. Lithos 323:24–43. https://doi.org/10.1016/j.lithos.2018.01.012

    Article  Google Scholar 

  • Ferrando C, Tribuzio R, Lissenberg CJ, France L, MacLeod CJ, Basch V, Villeneuve J, Deloule E, Sanfilippo A (2022) Brown amphibole as tracer of tectono-magmatic evolution of the Atlantis bank oceanic core complex (IODP Hole U1473A). J Petrol. https://doi.org/10.1093/petrology/egac089

    Article  Google Scholar 

  • Gao Y, Hoefs J, Hellebrand E, Handt AVD, Snow JE (2007) Trace element zoning in pyroxenes from ODP Hole 735B gabbros: diffusive exchange or synkinematic crystal fractionation? Contrib Miner Petrol 153(4):429–442

    Article  Google Scholar 

  • Ghiorso MS, Sack RO (1995) Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contr Mineral Petrol 119(2):197–212. https://doi.org/10.1007/BF00307281

    Article  Google Scholar 

  • Ghiorso MS, Hirschmann MM, Reiners PW, Kress VC III (2002) The pMELTS: a revision of MELTS for improved calculation of phase relations and major element partitioning related to partial melting of the mantle to 3 GPa. Geochem Geophys Geosyst 3(5):1–35. https://doi.org/10.1029/2001GC000217

    Article  Google Scholar 

  • Godard M, Awaji S, Hansen H, Hellebrand E, Brunelli D, Johnson K, Yamasaki T, Maeda J, Abratis M, Christie D, Kato Y, Mariet C, Rosner M (2009) Geochemistry of a long in situ section of intrusive slow-spread oceanic lithosphere: results from IODP Site U1309 (Atlantis Massif, 30°N Mid-Atlantic-Ridge). Earth Planet Sci Lett 279(1):110–122. https://doi.org/10.1016/j.epsl.2008.12.034

    Article  Google Scholar 

  • Gong X, Tian L, Dong Y (2022) Contrasting melt percolation and melt–rock reactions in the Parece Vela back-arc oceanic lithosphere. Philippine Sea: A Mineral Perspect Lithos 422–423:106727. https://doi.org/10.1016/j.lithos.2022.106727

    Article  Google Scholar 

  • Grambling NL, Dygert N, Boring B, Jean MM, Kelemen PB (2022) Thermal history of lithosphere formed beneath fast spreading ridges: constraints from the mantle transition zone of the East Pacific rise at hess deep and oman drilling project, wadi zeeb, samail ophiolite. J Geophys Res: Solid Earth 127(1):e2021JB022696. https://doi.org/10.1029/2021JB022696

    Article  Google Scholar 

  • Griffin W, Powell W, Pearson N, O’reilly S (2008) GLITTER: data reduction software for laser ablation ICP-MS. Laser Ablation-ICP-MS Earth Sci Mineral Assoc Can Short Course Series 40:204–207

    Google Scholar 

  • Grove TL, Kinzler RJ, Bryan WB (1992) Fractionation of mid-ocean ridge basalt (MORB). American Geophysical Union

    Book  Google Scholar 

  • Kelemen PB (1990) Reaction between ultramafic rock and fractionating basaltic magma I. Phase relations, the origin of calc-alkaline magma series, and the formation of discordant dunite. J Petrol 31(1):51–98. https://doi.org/10.1093/petrology/31.1.51

    Article  Google Scholar 

  • Koepke J, Feig ST, Snow J, Freise M (2004) Petrogenesis of oceanic plagiogranites by partial melting of gabbros: an experimental study. Contrib Miner Petrol 146(4):414–432. https://doi.org/10.1007/s00410-003-0511-9

    Article  Google Scholar 

  • Koepke J, Botcharnikov RE, Natland JH (2018) Crystallization of late-stage MORB under varying water activities and redox conditions: Implications for the formation of highly evolved lavas and oxide gabbro in the ocean crust. Lithos 323:58–77. https://doi.org/10.1016/j.lithos.2018.10.001

    Article  Google Scholar 

  • Koepke J, Garbe-Schönberg D, Müller T, Mock D, Müller S, Nasir S (2022) A reference section through fast-spread lower oceanic crust, Wadi Gideah, Samail ophiolite (Sultanate of Oman): petrography and petrology. J Geophys Res: Solid Earth 127(1):735. https://doi.org/10.1029/2021JB022735

    Article  Google Scholar 

  • Kvassnes AJS, Grove TL (2008) How partial melts of mafic lower crust affect ascending magmas at oceanic ridges. Contrib Miner Petrol 156(1):49–71

    Article  Google Scholar 

  • Lagabrielle Y, Cannat M (1990) Alpine Jurassic ophiolites resemble the modern central Atlantic basement. Geology 18(4):319–322. https://doi.org/10.1130/0091-7613(1990)018%3c0319:Ajortm%3e2.3.Co;2

    Article  Google Scholar 

  • Langmuir CH (1989) Geochemical consequences of in situ crystallization. Nature 340(6230):199–205. https://doi.org/10.1038/340199a0

    Article  Google Scholar 

  • Li S, Guilmette C, Yin C, Ding L, Zhang J, Wang H, Baral U (2019) Timing and mechanism of Bangong-Nujiang ophiolite emplacement in the Gerze area of central Tibet. Gondwana Res 71:179–193. https://doi.org/10.1016/j.gr.2019.01.019

    Article  Google Scholar 

  • Liao Y, Wei C, Rehman HU (2021) Titanium in calcium amphibole: behavior and thermometry. Am Miner 106(2):180–191. https://doi.org/10.2138/am-2020-7409

    Article  Google Scholar 

  • Ligi M, Bonatti E, Cipriani A, Ottolini L (2005) Water-rich basalts at mid-ocean-ridge cold spots. Nature 434(7029):66–69. https://doi.org/10.1038/nature03264

    Article  Google Scholar 

  • Lissenberg CJ, Dick HJB (2008) Melt–rock reaction in the lower oceanic crust and its implications for the genesis of mid-ocean ridge basalt. Earth Planet Sci Lett 271(1):311–325

    Article  Google Scholar 

  • Lissenberg CJ, MacLeod CJ (2016) A reactive porous flow control on mid-ocean ridge magmatic evolution. J Petrol 57:2195–2220. https://doi.org/10.1093/petrology/egw074

    Article  Google Scholar 

  • Lissenberg CJ, Rioux M, Shimizu N, Bowring SA, Mével C (2009) Zircon dating of oceanic crustal accretion. Science 323(5917):1048–1050. https://doi.org/10.1126/science.1167330

    Article  Google Scholar 

  • Lissenberg CJ, MacLeod CJ, Bennett EN (2019) Consequences of a crystal mush-dominated magma plumbing system: a mid-ocean ridge perspective. Phil Trans Royal Soc a: Math, Phys Eng Sci 377(2139):20180014. https://doi.org/10.1098/rsta.2018.0014

    Article  Google Scholar 

  • Liu C-Z, Zhang C, Yang L-Y, Zhang L-L, Ji W-Q, Wu F-Y (2014) Formation of gabbronorites in the Purang ophiolite (SW Tibet) through melting of hydrothermally altered mantle along a detachment fault. Lithos. https://doi.org/10.1016/j.lithos.2014.06.019

    Article  Google Scholar 

  • Liu CZ, Chung SL, Wu FY, Zhang C, Xu Y, Wang JG, Chen Y, Guo S (2016) Tethyan suturing in Southeast Asia: Zircon U-Pb and Hf-O isotopic constraints from Myanmar ophiolites. Geology 44(4):311–314

    Article  Google Scholar 

  • Liu T, Wu F-Y, Liu C-Z, Tribuzio R, Ji W-B, Zhang C, Xu Y, Zhang W-Q (2018) Variably evolved gabbroic intrusions within the **gaze ophiolite (Tibet): new insights into the origin of ophiolite diversity. Contrib Mineral Petrol. https://doi.org/10.1007/s00410-018-1518-6

    Article  Google Scholar 

  • Liu H-Y, Zeng Q-G, Wang Y, Mao G-Z (2020) Petrology, zircon U-Pb age and geochemical characteristics of the Lhaguo Tso ophiolitic melange in Tibet. Geol Bull China 39(2/3):164–176 (in Chinese with English Abstract)

    Google Scholar 

  • Liu C-Z, Wu F-Y, Liu T, Zhang C, Zhang W-Q, Zhang Z-Y, Zhang Z, Wei W, Lin Y-Z (2022) An origin of ultraslow spreading ridges for the Yarlung-Tsangpo ophiolites. Fundam Res 2(1):74–83. https://doi.org/10.1016/j.fmre.2021.07.002

    Article  Google Scholar 

  • MacLeod CJ, Dick HJB, Blum P, Abe N, Blackman DK, Bowles JA, Cheadle MJ, Cho K, Ciazela J, Deans JR, Edgcomb VP, Ferrando C, France L, Ghosh B, Ildefonse BM, Kendrick MA, Koepke JH, Leong JAM, Liu C, Ma Q, Morishita T, Morris A, Natland JH, Nozaka T, Pluemper O, Sanfilippo A, Sylvan JB, Tivey MA, Tribuzio R, Viegas LGF (2017) Expedition 360 methods. In: MacLeod CJ, Dick HJB, Blum P (eds) and the Expedition 360 Scientists, Southwest Indian Ridge Lower Crust and Moho Proceedings of the International Ocean Discovery Program, 360: College Station, TX. International Ocean Discovery Program. https://doi.org/10.14379/iodp.proc.360.102.2017

    Chapter  Google Scholar 

  • Maeda J, Naslund HR, Jang YD, Kikawa E, Tajima T, Blackburn WH (2002) High-temperature fluid migration within oceanic layer 3 gabbros, hole 735B, Southwest Indian ridge: implications for the magmatic-hydrothermal transition at slow-spreading mid-ocean ridges. Sci Results 176:1–56

    Google Scholar 

  • Manatschal G, Sauter D, Karpoff AM, Masini E, Mohn G, Lagabrielle Y (2011) The Chenaillet ophiolite in the French/Italian Alps: an ancient analogue for an Oceanic Core Complex? Lithos 124(3):169–184. https://doi.org/10.1016/j.lithos.2010.10.017

    Article  Google Scholar 

  • Morishita T, Hara K, Nakamura K, Sawaguchi T, Tamura A, Arai S, Okino K, Takai K, Kumagai H (2009) Igneous, alteration and exhumation processes recorded in abyssal peridotites and related fault rocks from an oceanic core complex along the central Indian ridge. J Petrol 50(7):1299–1325. https://doi.org/10.1093/petrology/egp025

    Article  Google Scholar 

  • Müller S, Garbe-Schönberg D, Koepke J, Hoernle K (2022) A reference section through fast-spread lower Oceanic Crust, Wadi Gideah, Samail Ophiolite (Sultanate of Oman): trace element systematics and REE crystallization temperatures—implications for hybrid crustal accretion. J Geophys Res: Solid Earth 127(3):e2021JB022699. https://doi.org/10.1029/2021JB022699

    Article  Google Scholar 

  • Nandedkar RH, Hürlimann N, Ulmer P, Müntener O (2016) Amphibole–melt trace element partitioning of fractionating calc-alkaline magmas in the lower crust: an experimental study. Contrib Miner Petrol 171(8):71. https://doi.org/10.1007/s00410-016-1278-0

    Article  Google Scholar 

  • Nicolas A, Reuber I, Benn K (1988) A new magma chamber model based on structural studies in the Oman ophiolite. Tectonophysics 151(1):87–105

    Article  Google Scholar 

  • Nicolas A, Boudier F, Ildefonse B, Ball E (2000) Accretion of Oman and United Arab Emirates ophiolite – discussion of a new structural map. Mar Geophys Res 21(3):147–180. https://doi.org/10.1023/A:1026769727917

    Article  Google Scholar 

  • Pearce JA, Stern RJ, Bloomer SH, Fryer P (2005) Geochemical map** of the Mariana arc-basin system: Implications for the nature and distribution of subduction components. Geochem, Geophys, Geosyst. https://doi.org/10.1029/2004GC000895

    Article  Google Scholar 

  • Prigent C, Warren JM, Kohli AH, Teyssier C (2020) Fracture-mediated deep seawater flow and mantle hydration on oceanic transform faults. Earth Planet Sci Lett 532:115988. https://doi.org/10.1016/j.epsl.2019.115988

    Article  Google Scholar 

  • Qian Q, Hermann J, Dong F, Lin L, Sun B (2020) Episodic formation of Neotethyan ophiolites (Tibetan plateau): Snapshots of abrupt global plate reorganizations during major episodes of supercontinent breakup? Earth Sci Rev 203:103144. https://doi.org/10.1016/j.earscirev.2020.103144

    Article  Google Scholar 

  • Rampone E, Borghini G, Godard M, Ildefonse B, Crispini L, Fumagalli P (2016) Melt/rock reaction at oceanic peridotite/gabbro transition as revealed by trace element chemistry of olivine. Geochim Cosmochim Acta 190(Supplement C):309–331. https://doi.org/10.1016/j.gca.2016.06.029

    Article  Google Scholar 

  • Rioux M, Cheadle MJ, John BE, Bowring SA (2016) The temporal and spatial distribution of magmatism during lower crustal accretion at an ultraslow-spreading ridge: High-precision U-Pb zircon dating of ODP Holes 735B and 1105A, Atlantis Bank, Southwest Indian Ridge. Earth Planet Sci Lett 449:395–406

    Article  Google Scholar 

  • Rioux M, Benoit M, Amri I, Ceuleneer G, Garber JM, Searle M, Leal K (2021a) The origin of felsic intrusions within the mantle section of the samail ophiolite: geochemical evidence for three distinct mixing and fractionation trends. J Geophys Res: Solid Earth 126(5):e2020JB020760. https://doi.org/10.1029/2020JB020760

    Article  Google Scholar 

  • Rioux M, Garber JM, Searle M, Kelemen P, Miyashita S, Adachi Y, Bowring S (2021b) High-precision U-Pb zircon dating of late magmatism in the samail ophiolite: a record of subduction initiation. J Geophys Res: Solid Earth 126(5):e2020JB020758. https://doi.org/10.1029/2020JB020758

    Article  Google Scholar 

  • Roeder PL, Emslie RF (1970) Olivine-liquid equilibrium. Contrib Miner Petrol 29(4):275–289

    Article  Google Scholar 

  • Rospabé M, Benoit M, Ceuleneer G, Kaczmarek M-A, Hodel F (2019) Melt hybridization and metasomatism triggered by syn-magmatic faults within the Oman ophiolite: a clue to understand the genesis of the dunitic mantle-crust transition zone. Earth Planet Sci Lett 516:108–121. https://doi.org/10.1016/j.epsl.2019.04.004

    Article  Google Scholar 

  • Rospabé M, Ceuleneer G, Le Guluche V, Benoit M, Kaczmarek M-A (2021) The chicken and Egg dilemma linking dunites and chromitites in the mantle-crust transition zone beneath oceanic spreading centres: a case study of chromite-hosted silicate inclusions in dunites formed at the top of a mantle diapir (Oman Ophiolite). J Petrol. https://doi.org/10.1093/petrology/egab026

    Article  Google Scholar 

  • Sanfilippo A, Dick HJB, Ohara Y (2013) Melt–rock reaction in the mantle: mantle troctolites from the parece vela ancient back-arc spreading center. J Petrol 54(5):861–885

    Article  Google Scholar 

  • Sanfilippo A, Tribuzio R, Tiepolo M (2014) Mantle–crust interactions in the oceanic lithosphere: constraints from minor and trace elements in olivine. Geochim Cosmochim Acta 141:423–439. https://doi.org/10.1016/j.gca.2014.06.012

    Article  Google Scholar 

  • Sanfilippo A, Morishita T, Kumagai H, Nakamura K, Okino K, Hara K, Tamura A, Arai S (2015) Hybrid troctolites from mid-ocean ridges: inherited mantle in the lower crust. Lithos 232:124–130. https://doi.org/10.1016/j.lithos.2015.06.025

    Article  Google Scholar 

  • Sanfilippo A, Dick HJB, Ohara Y, Tiepolo M (2016) New insights on the origin of troctolites from the breakaway area of the Godzilla Megamullion (Parece Vela back-arc basin): The role of melt–mantle interaction on the composition of the lower crust. Island Arc 25(3):220–234

    Article  Google Scholar 

  • Shimizu K, Liang Y, Sun C, Jackson C, Saal AE (2017) Parameterized lattice strain models for REE partitioning between amphibole and silicate melt. Ame Mineral 102:2254–2267

    Article  Google Scholar 

  • Sisson TW, Layne GD (1993) H2O in basalt and basaltic andesite glass inclusions from four subduction-related volcanoes. Earth Planet Sci Lett 117(3):619–635. https://doi.org/10.1016/0012-821X(93)90107-K

    Article  Google Scholar 

  • Stern RJ, Lin P-N, Morris JD, Jackson MC, Fryer P, Bloomer SH, Ito E (1990) Enriched back-arc basin basalts from the northern Mariana Trough: implications for the magmatic evolution of back-arc basins. Earth Planet Sci Lett 100(1):210–225. https://doi.org/10.1016/0012-821X(90)90186-2

    Article  Google Scholar 

  • Sun C, Liang Y (2012) Distribution of REE between clinopyroxene and basaltic melt along a mantle adiabat: effects of major element composition, water, and temperature. Contrib Miner Petrol 163(5):807–823. https://doi.org/10.1007/s00410-011-0700-x

    Article  Google Scholar 

  • Sun C, Liang Y (2013) Distribution of REE and HFSE between low-Ca pyroxene and lunar picritic melts around multiple saturation points. Geochim Cosmochim Acta 119:340–358. https://doi.org/10.1016/j.gca.2013.05.036

    Article  Google Scholar 

  • Sun C, Liang Y (2017) A REE-in-plagioclase–clinopyroxene thermometer for crustal rocks. Contrib Miner Petrol 172(4):24. https://doi.org/10.1007/s00410-016-1326-9

    Article  Google Scholar 

  • Sun C, Lissenberg CJ (2018) Formation of fast-spreading lower oceanic crust as revealed by a new Mg–REE coupled geospeedometer. Earth Planet Sci Lett 487:165–178. https://doi.org/10.1016/j.epsl.2018.01.032

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Lond Special Publ 42(1):313–345

    Article  Google Scholar 

  • Tamura A, Morishita T, Ishimaru S, Arai S (2014) Geochemistry of spinel-hosted amphibole inclusions in abyssal peridotite: insight into secondary melt formation in melt–peridotite reaction. Contrib Miner Petrol 167(3):974. https://doi.org/10.1007/s00410-014-0974-x

    Article  Google Scholar 

  • Tamura A, Morishita T, Ishimaru S, Hara K, Sanfilippo A, Arai S (2016) Compositional variations in spinel-hosted pargasite inclusions in the olivine-rich rock from the oceanic crust–mantle boundary zone. Contrib Miner Petrol 171(5):39. https://doi.org/10.1007/s00410-016-1245-9

    Article  Google Scholar 

  • Tang Y, Zhai Q-G, Hu P-Y, Wang W (2021) Petrogenesis of anorthosite in the Laguocuo ophiolite, western part of the Bangong-Nujiang suture zone and its constraint to the evolution of the Meso-Tethys Ocean. Geol Bull China 40(8):1265–1278 ([in Chinese with English Abstract])

    Google Scholar 

  • Tani K, Dunkley DJ, Ohara Y (2011) Termination of backarc spreading: zircon dating of a giant oceanic core complex. Geology 39(1):47–50. https://doi.org/10.1130/g31322.1

    Article  Google Scholar 

  • Tao C, Seyfried WE, Lowell RP, Liu Y, Liang J, Guo Z, Ding K, Zhang H, Liu J, Qiu L, Egorov I, Liao S, Zhao M, Zhou J, Deng X, Li H, Wang H, Cai W, Zhang G, Zhou H, Lin J, Li W (2020) Deep high-temperature hydrothermal circulation in a detachment faulting system on the ultra-slow spreading ridge. Nat Commun. https://doi.org/10.1038/s41467-020-15062-w

    Article  Google Scholar 

  • Tribuzio R, Renna MR, Dallai L, Zanetti A (2014) The magmatic–hydrothermal transition in the lower oceanic crust: clues from the Ligurian ophiolites, Italy. Geochim Cosmochim Acta 130:188–211. https://doi.org/10.1016/j.gca.2014.01.010

    Article  Google Scholar 

  • Tribuzio R, Manatschal G, Renna MR, Ottolini L, Zanetti A (2020) Tectono-magmatic interplay and related metasomatism in gabbros of the chenaillet ophiolite (Western Alps). J Petrol 60(12):2483–2508. https://doi.org/10.1093/petrology/egaa015

    Article  Google Scholar 

  • van der Zwan FM, Devey CW, Hansteen TH, Almeev RR, Augustin N, Frische M, Haase KM, Basaham A, Snow JE (2017) Lower crustal hydrothermal circulation at slow-spreading ridges: evidence from chlorine in Arctic and South Atlantic basalt glasses and melt inclusions. Contrib Miner Petrol 172(11):97. https://doi.org/10.1007/s00410-017-1418-1

    Article  Google Scholar 

  • VanTongeren JA, Kelemen PB, Hanghøj K (2008) Cooling rates in the lower crust of the Oman ophiolite: Ca in olivine, revisited. Earth Planet Sci Lett 267(1):69–82. https://doi.org/10.1016/j.epsl.2007.11.034

    Article  Google Scholar 

  • Vieira Duarte JF, Kaczmarek M-A, Vonlanthen P, Putlitz B, Müntener O (2020) Hydration of a mantle shear zone beyond serpentine stability: a possible link to microseismicity along ultraslow spreading ridges? J Geophys Res: Solid Earth 125(10):e2020JB019509. https://doi.org/10.1029/2020JB019509

    Article  Google Scholar 

  • Villiger S, Müntener O, Ulmer P (2007) Crystallization pressures of mid-ocean ridge basalts derived from major element variations of glasses from equilibrium and fractional crystallization experiments. J Geophys Res: Solid Earth. https://doi.org/10.1029/2006jb004342

    Article  Google Scholar 

  • Voigt M, Coogan LA, von der Handt A (2017) Experimental investigation of the stability of clinopyroxene in mid-ocean ridge basalts: the role of Cr and Ca/Al. Lithos 274–275:240–253. https://doi.org/10.1016/j.lithos.2017.01.003

    Article  Google Scholar 

  • Wallace PJ (2005) Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data. J Volcanol Geoth Res 140(1):217–240. https://doi.org/10.1016/j.jvolgeores.2004.07.023

    Article  Google Scholar 

  • Wang W-L, Aitchison JC, Lo C-H, Zeng Q-G (2008) Geochemistry and geochronology of the amphibolite blocks in ophiolitic mélanges along Bangong-Nujiang suture, central Tibet. J Asian Earth Sci 33(1):122–138. https://doi.org/10.1016/j.jseaes.2007.10.022

    Article  Google Scholar 

  • Wang B-D, Wang L-Q, Chung S-L, Chen J-L, Yin F-G, Liu H, Li X-B, Chen L-K (2016) Evolution of the Bangong-Nujiang Tethyan ocean: insights from the geochronology and geochemistry of mafic rocks within ophiolites. Lithos 245(Supplement C):18–33. https://doi.org/10.1016/j.lithos.2015.07.016

    Article  Google Scholar 

  • Wang B-D, Liu H, Wang L-Q, He J, Wang D-B, Li F-Q, Wu Z (2020) Spatial-temporal framework of Shiquanhe-Laguocuo-Yongzhu-JIali ophiolite mélange zone, Qinghai-Tibet Plateau and its tectonic evolution. Earth Sci 45(8):2764–2784 (in Chinese with English Abstract)

    Google Scholar 

  • Wolff PE, Koepke J, Feig ST (2013) The reaction mechanism of fluid-induced partial melting of gabbro in the oceanic crust. Eur J Mineral 25(3):279–298

    Article  Google Scholar 

  • Wu S-T, Huang C, **e L-W, Yang Y-H, Yang J-H (2018) Iolite based bulk normalization as 100% (m/m) quantification strategy for reduction of laser ablation-inductively coupled plasma-mass spectrometry transient signal. Chin J Anal Chem 46(10):1628–1636. https://doi.org/10.1016/S1872-2040(18)61118-1

    Article  Google Scholar 

  • Wu S, Wörner G, Jochum KP, Stoll B, Simon K, Kronz A (2019) The preparation and preliminary characterisation of three synthetic andesite reference glass materials (ARM-1, ARM-2, ARM-3) for in situ microanalysis. Geostand Geoanal Res 43(4):567–584. https://doi.org/10.1111/ggr.12301

    Article  Google Scholar 

  • Xu J-X, Li C, Fan J-J, Wang M, **e C-M (2018) Tectonic propoerty of the Laguocuo ophiolite in Gerze County, Tibet: Constraints from petrology, geochemistry, LA-ICP-MS zircon U-Pb dating and Lu-Hf isotope. Geol Bull China 37(8):1541–1553 (in Chinese with English Abstract)

    Google Scholar 

  • Xu M, Zhao X, Canales JP (2020) Structural variability within the kane oceanic core complex from full waveform inversion and reverse time migration of streamer data. Geophys Res Lett 47(7):e2020GL087405. https://doi.org/10.1029/2020GL087405

    Article  Google Scholar 

  • Yamazaki T, Seama N, Okino K, Kitada K, Joshima M, Oda H, Naka J (2003) Spreading process of the northern Mariana Trough: rifting-spreading transition at 22°N. Geochem, Geophys, Geosyst. https://doi.org/10.1029/2002GC000492

    Article  Google Scholar 

  • Yin A, Harrison TM (2000) Geologic evolution of the Himalayan-Tibetan orogen. Annu Rev Earth Planet Sci 28(1):211–280. https://doi.org/10.1146/annurev.earth.28.1.211

    Article  Google Scholar 

  • Yuan Y, Yin Z, Liu W, Huang Q, Li J, Liu H, Wan Z, Cai Z, **a B (2015) Tectonic evolution of the Meso-Tethys in the Western Segment of Bangonghu-Nujiang Suture zone: insights from geochemistry and geochronology of the Lagkor Tso ophiolite. Acta Geologica Sinica - English Edition 89(2):369–388. https://doi.org/10.1111/1755-6724.12436

    Article  Google Scholar 

  • Zhang Y, Zhang K, Li B, Wang Y, Wei Q, Tang X (2007) Zircon SHRIMP U-Pb geochronology and petrogenesis of the plagiogranites from the Lagkor Lake ophiolite, Gerze, Tibet China. Chin Sci Bull 52(5):651–659. https://doi.org/10.1007/s11434-007-0084-5

    Article  Google Scholar 

  • Zhang W-Q, Liu C-Z, Dick HJB (2020) Evidence for multi-stage melt transport in the lower ocean crust: the Atlantis bank gabbroic massif IODP Hole U1473A, SW Indian Ridge). J Petrol. https://doi.org/10.1093/petrology/egaa082

    Article  Google Scholar 

  • Zhang C, Koepke J, Wolff PE, Horn I, Garbe-Schönberg D, Berndt J (2021) Multi-stage hydrothermal veins in layered gabbro of the oman ophiolite: implications for focused fluid circulation in the lower oceanic crust. J Geophys Res: Solid Earth 126(8):e2021JB022349. https://doi.org/10.1029/2021JB022349

    Article  Google Scholar 

  • Zhang W-Q, Liu C-Z, Liu T (2022) Compositions of cumulates in lower oceanic crust and implications for ophiolite studies. Acta Petrologica Sinica 38(6):1630–1654. https://doi.org/10.18654/1000-0569/2022.06.06

    Article  Google Scholar 

  • Zhao M, Canales JP, Sohn RA (2012) Three-dimensional seismic structure of a Mid-Atlantic Ridge segment characterized by active detachment faulting (Trans-Atlantic Geotraverse, 25°55′N-26°20′N). Geochem, Geophys, Geosyst. https://doi.org/10.1029/2012GC004454

    Article  Google Scholar 

Download references

Acknowledgements

We thank Alessio Sanfilippo and an anonymous reviewer for constructive comments and Editor Othmar Müntener for editorial handling. We thank Ding-Shuai Xue, Dan-** Zhang, Shi-Tou Wu and Lei Xu for help in geochemical analysis. This work was financially supported by the National Science Fund for Distinguished Young Scholars (42025201), National Key Research and Development Project of China (2020YFA0714801), Strategic Priority Research Program of the Chinese Academy of Sciences (XDB42020301) and China Postdoctoral Science Foundation (2021M703197).

Author information

Authors and Affiliations

Authors

Contributions

W-QZ: fieldwork, material preparation, data collection and analysis, data interpretation, and writing the manuscript. C-ZL: fieldwork, material preparation, data interpretation, and writing the manuscript. TL: fieldwork, and data interpretation. CZ: field work, and data interpretation. X-NL: field work and data collection. ZZ: fieldwork and data collection. Y-ZL: field work and data collection. Z-YZ: geochemical modeling and data interpretation.

Corresponding author

Correspondence to Chuan-Zhou Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Communicated by Othmar Müntener.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1051 KB)

Supplementary file2 (XLSX 602 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, WQ., Liu, CZ., Liu, T. et al. Multi-stage melt impregnation and magma–seawater interaction in a slow-spreading oceanic lithosphere: constraints from cumulates in the Lagkorco ophiolite (central Tibet). Contrib Mineral Petrol 177, 109 (2022). https://doi.org/10.1007/s00410-022-01976-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-022-01976-9

Keywords

Navigation