Log in

Silica and volatile-element metasomatism of Archean mantle: a xenolith-scale example from the Kaapvaal Craton

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Textural evidence in a composite garnet harzburgite mantle xenolith from Kimberley, South Africa, suggests metasomatism of a severely melt-depleted substrate by a siliceous, volatile-rich fluid. The fluid reacted with olivine-rich garnet harzburgite, converting olivine to orthopyroxene, forming additional garnet and introducing phlogopite, and small quantities of sulfide and probable carbonate. Extensive reaction (>50%) forming orthopyroxenite resulted from channelized flow in a vein, with orthopyroxene growth in the surrounding matrix from a pervasive grain-boundary fluid. The mineralogy of the reaction assemblage and the bulk composition of the added component dominated by Si and Al, with lesser quantities of K, Na, H, C and S, are consistent with experimental studies of hybridization of siliceous melts or fluids with peridotite. However, low Na, Fe and Ca compared with melts of eclogite suggest a fluid phase that previously evolved by reaction with peridotitic mantle. Garnet and phlogopite trace element compositions indicate a fluid rich in large-ion lithophile (LIL) elements, but poor in high field-strength elements (HFSE), qualitatively consistent with subduction zone melts and fluids. An Os isotope (TRD) model age of 2.97 ± 0.04 Ga and lack of compositional zonation in the xenolith indicate an ancient origin, consistent with proposed 2.9 Ga subduction and continental collision in the Kimberley region. The veined sample reflects the silicic end of a spectrum of compositions generated in the Kimberley mantle lithosphere by the metasomatizing effects of fluids derived from oceanic lithosphere. These results provide petrographic and chemical evidence for fluid-mediated Si-, volatile- and trace-element metasomatism of Archean mantle, and support models advocating large-scale modification of regions of Archean subcontinental mantle by subduction processes that occurred in the Archean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anders E, Grevesse N (1989) Abundances of the elements: meteoritic and solar. Geochim Cosmochim Acta 53: 197–214

    Article  Google Scholar 

  • Audétat D, Keppler H (2004) Viscosity of fluids in subduction zones. Science 303: 513–516

    Article  PubMed  Google Scholar 

  • Aulbach S, Stachel T, Viljoen KS, Brey GP, Harris JW (2002) Eclogitic and websteritic diamond sources beneath the Limpopo belt – is slab melting the link. Contrib Mineral Petrol 143: 56–70

    Google Scholar 

  • Bell DR, Grégoire M, Grove TL, Chatterjee N, Bowring, SA (2003) Silica and carbon deposition in the Kimberley peridotites. Extd Abstr 8th International Kimberlite Conf Victoria Canada, 4 pp (unpaginated CD)

  • Berg GW (1986) Evidence for carbonate in the mantle. Nature 324: 50–51

    Article  Google Scholar 

  • Bodinier J-L, Menzies MA, Shimizu N, Frey FA, McPherson E (2004) Silicate, hydrous and carbonate metasomatism at Lherz, France: contemporaneous derivatives of silicate melt – harzburgite reaction. J Petrol 45: 299–320

    Article  Google Scholar 

  • Boyd FR (1989) Compositional distinction between oceanic and cratonic lithosphere. Earth Planet Sci Lett 96: 15–26

    Article  Google Scholar 

  • Boyd FR, McCallister RH (1976) Densities of fertile and sterile garnet lherzolites. Geophys Res Lett 3: 509–512

    Google Scholar 

  • Boyd FR, Mertzman SA (1987) Composition and structure of the Kaapvaal lithosphere. In: Mysen BO (ed) Magmatic processes: Physicochemical principles. Geochemical Society Spec Publ 1: 13–24

    Google Scholar 

  • Boyd FR, Pokhilenko NP, Pearson DG, Mertzman SA, Sobolev NV, Finger LW (1997) Composition of the Siberian cratonic mantle: evidence from Udachnaya peridotite xenoliths. Contrib Mineral Petrol 128: 228–246

    Article  Google Scholar 

  • Brenan JM, Shaw HF, Ryerson FJ, Phinney DL (1995) Mineral-aqueous fluid partitioning of trace elements at 900°C and 20 GPa: constraints on the trace element chemistry of mantle and deep crustal fluids. Geochim Cosmochim Acta 59: 3331–3350

    Article  Google Scholar 

  • Brey GP, Köhler T (1990) Geothermobarometry in four phase lherzolites II. New thermobarometers and practical assessment of existing thermobarometers. J Petrol 31: 1353–1378

    Google Scholar 

  • Bureau H, Keppler H (1999) Complete miscibility between silicate melts and hydrous fluids in the upper mantle: experimental geochemical evidence and geochemical implications. Earth Planet Sci Lett 165: 187–196

    Article  Google Scholar 

  • Burgess SR, Harte B (1999) Tracing lithosphere evolution through the analysis of heterogeneous G9/G10 garnets in peridotite xenoliths, I: major element chemistry. In: Gurney JJ, Gurney JL, Pascoe MD, Richardson SH (eds) The J.B. Dawson Volume. Proc 7thInternat Kimberlite Conf, Red Roof Design, Cape Town, pp 66–80

    Google Scholar 

  • Canil D (1991) Experimental evidence for the exsolution of cratonic peridotite from high-temperature harzburgite. Earth Planet Sci Lett 106: 64–72

    Article  Google Scholar 

  • Carlson RW, Moore RO (2004) Age of the eastern Kaapvaal mantle: Re-Os isotope data for peridotite xenoliths from the Monastery kimberlite. S Afr J Geol 107: 81–90

    Article  Google Scholar 

  • Carlson RW, Pearson DG, Boyd FR, Shirey SB, Irvine G, Menzies AH, Gurney JJ (1999) Re-Os systematics of lithospheric peridotites: implications for lithosphere formation and preservation. In: Gurney JJ, Gurney JL, Pascoe MD, Richardson SH (eds) The J. B. Dawson Volume Proc 7th Internat Kimberlite Conf. Red Roof Design, Cape Town, pp 99–108

    Google Scholar 

  • Carroll MR, Wyllie P J (1989) Experimental phase relations in the system peridotite – tonalite – H2O at 15 kbar; implications for assimilation and differentiation processes near the crust mantle boundary. J Petrol 30: 1351–1382

    Google Scholar 

  • Cox KG, Smith MR and Beswetherick S (1987) Textural studies of garnet lherzolites: evidence of exsolution origin from high-temperature harzburgites. In Nixon PH (ed) Mantle Xenoliths. John Wiley and Sons, Chichester, pp 537–550

    Google Scholar 

  • Dawson JB (2004) A fertile harzburgite to garnet lherzolite transition: possible inferences for the roles of strain and metasomatism in upper mantle peridotites. Lithos 77: 553–570

    Article  Google Scholar 

  • Dawson JB, Stephens WE (1975) Statistical classification of garnets from kimberlite and associated xenoliths. J Geol 83: 589–607

    Google Scholar 

  • Domanik KJ, Holloway JR (1986) The stability and composition of phengitic muscovite and associated phases from 5.5 to 11 GPa: implications for deeply subducted sediments. Geochim Cosmochim Acta 60: 4133–4150

    Article  Google Scholar 

  • Erlank AJ, Waters FG, Hawkesworth CJ, Haggerty SE, Allsopp HL, Rickard RS, Menzies M (1987) Evidence for mantle metasomatism in peridotite nodules from the Kimberley pipes, South Africa. In: Menzies M, Hawkesworth CJ (eds) Mantle metasomatism. Academic Press, London, pp 221–309

    Google Scholar 

  • Gaul O, Griffin WL, O’Reilly SY, Pearson NJ (2000) Map** olivine composition in the lithospheric mantle. Earth Planet Sci Lett 182: 223–235

    Article  Google Scholar 

  • Grégoire M, Bell DR, le Roex AP (2002) Trace element geochemistry of phlogopite-rich mafic xenoliths: their classification and their relationship to phlogopite-bearing peridotites and kimberlites revisited. Contrib Mineral Petrol 142: 603–625

    Google Scholar 

  • Grégoire M, Bell DR, le Roex AP (2003) Garnet lherzolites from the Kaapvaal Craton (South Africa): trace element evidence for a metasomatic history. J Petrol 44: 629–657

    Article  Google Scholar 

  • Griffin WL, Smith D, Boyd FR, Cousens DR, Ryan CG, Sie SH, Suter GF (1989) Trace element zoning in garnets from sheared mantle xenoliths. Geochim Cosmochim Acta 53: 561–567

    Article  Google Scholar 

  • Griffin WL, O’Reilly SY, Ryan CG (1999) The composition and origin of the sub-continental lithospheric mantle. In: Fei Y, Bertka CM, Mysen BO (eds) Mantle petrology: field observations and high pressure experimentation: a tribute to Francis R. (Joe) Boyd. Geochemical Soc Spec Publ 6: 13–45

    Google Scholar 

  • Griffin WL, O’Reilly SY, Abe N, Aulbach S, Davies RM, Pearson NJ, Doyle BJ, Kivi K (2003) The origin and evolution of Archean lithospheric mantle. Precambrian Res 127: 19–41

    Article  Google Scholar 

  • Griffin WL, Graham S, O’Reilly SY, Pearson NJ (2004) Lithosphere evolution beneath the Kaapvaal Craton: Re-Os systematics of sulfides in mantle-derived peridotites. Chem Geol 208: 89–118

    Article  Google Scholar 

  • Gurney JJ (1984) A correlation between garnets and diamonds. In: Glover JE, Harris PG (eds) Kimberlite occurrence and origin: a basis for conceptual models in exploration. Geology Dept and University Extension, University of Western Australia Publ 8: 143–166

  • Gurney JJ, Harte B (1980) Chemical variations in upper mantle nodules from southern African kimberlites. Phil Trans Royal Soc London A297: 273–293

    Article  Google Scholar 

  • Harte B, Hunter RH, Kinny PD (1993) Melt geometry, movement and crystallization, in relation to mantle dykes, veins, and metasomatism. Phil Trans R Soc Lond A342: 1–21

    Article  Google Scholar 

  • Herzberg C (1993) Lithosphere peridotites of the Kaapvaal craton. Earth Planet Sci Lett 120: 13–29

    Article  Google Scholar 

  • Hoal KEO, Hoal BG, Erlank AJ, Shimizu N (1994) Metasomatism of the mantle lithosphere recorded by rare-earth elements in garnet. Earth Planet Sci Lett 126: 303–313

    Article  Google Scholar 

  • Hops JJ, Gurney JJ, Harte B, Winterburn P (1989) Megacrysts and high temperature nodules from the Jagersfontein kimberlite pipe. In : Ross J et al (eds) Kimberlites and Related rocks. Volume 2. Their mantle/crust setting, diamonds and diamond exploration. Geol Soc Australia Spec Publ 14: 759–770

    Google Scholar 

  • Johnston AD, Wyllie PJ (1989) The system tonalite-peridotite-H2O at 30 kbar, with applications to hybridization in subduction zone magmatism. Contrib Mineral Petrol 102: 257–264

    Article  Google Scholar 

  • Jones AP, Smith JV, Dawson, JB (1982) Mantle metasomatism in 14 veined peridotites from Bultfontein mine, South Africa. J Geol 90: 435–453

    Article  Google Scholar 

  • Jordan TH (1988) Structure and formation of the continental tectosphere. Journal of Petrology Special Lithosphere Issue: 11–37

    Google Scholar 

  • Kelemen PB (1990) Reaction between ultramafic wallrock and fractionating basaltic magma Part I Phase relations, the origin of calc-alkaline magma series and the formation of discordant dunite. J Petrol 31: 51–98

    Google Scholar 

  • Kelemen PB (1995) Generation of high-Mg andesites and the continental crust. Contrib Mineral Petrol 120: 1–19

    Article  Google Scholar 

  • Kelemen PB, Shimizu N, Dunn JT (1993) Relative depletion of niobium in some arc magmas and the continental crust: partitioning of K, Nb, La and Ce during melt/rock reaction in the upper mantle. Earth Planet Sci Lett 120: 111–133

    Article  Google Scholar 

  • Kelemen PB, Hart SR, Bernstein S (1998) Silica enrichment in the continental upper mantle via melt/rock reaction. Earth Planet Sci Lett 164: 387–406

    Article  Google Scholar 

  • Kepezhinskas PK, Defant MJ, Drummond MS (1995) Na metasomatism in the island-arc mantle by slab melt – peridotite interaction: evidence from mantle xenoliths in the North Kamchatka arc. J Petrol 36: 1505–1527

    Google Scholar 

  • Kepezhinskas PK, Defant MJ, Drummond MS (1996) Progressive enrichment of island arc mantle by melt-peridotite interaction inferred from Kamchatka xenoliths. Geochim Cosmochim Acta 60: 1217–1229

    Article  Google Scholar 

  • Kesson SE, Ringwood AE (1989) Slab – mantle interactions. 2. The formation of diamonds. Chem Geol 78: 97–118

    Article  Google Scholar 

  • Kinzler RJ, Grove TL (1999) Origin of depleted cratonic harzburgite by deep fractional melt extraction and shallow olivine cumulate infusion. In Gurney JJ, Gurney JL, Pascoe MD, Richardson SH (eds) The J.B. Dawson Volume. Proc 7thInternat Kimberlite Conf. Red Roof Design, Cape Town, pp 437–443

    Google Scholar 

  • Kopylova MG, Russell JK (2000) Chemical stratification of cratonic lithosphere: constraints from the Northern Slave Craton, Canada. Earth Planet Sci Lett 181: 71–87

    Article  Google Scholar 

  • Kramers JD Roddick JCM, Dawson JB (1983) Trace element and isotopic studies on veined, metasomatic and “MARID” xenoliths from Bultfontein. South Africa Earth Planet Sci Lett 65: 90–106

    Article  Google Scholar 

  • Lahaye Y, Brey GP (2003) Scale and timing constraints on chemical redistribution between minerals of a composite garnet peridotite/orthopyroxenite. Abstr 8th Internat Kimberlite Conf Victoria, Canada, CD unpaginated

  • Laurora A, Mazzucchelli M, Rivalenti G, Vannucci R, Zanetti A, Barbier MA, Cingolani C (2001) Metasomatism and melting in carbonated peridotite xenoliths for the mantle wedge: the Gobernador Gregores case (southern Patagonia). J Petrol 42: 69–87

    Article  Google Scholar 

  • Lee WJ, Wyllie PJ (2000) The system CaO-MgO-SiO2-CO2 at 1 GPa, metasomatic wehrlites, and primary carbonatite magmas. Contrib Mineral Petrol 138: 214–228

    Article  Google Scholar 

  • Lorand JP (1993) Comment on ‘Content and isotopic composition of sulphur in ultramafic xenoliths from central Asia’ by D. A. Ionov, J. Hoefs, K. H. Wedepohl and U. Wiechert. Earth Planet Sci Lett 119: 627–634

    Article  Google Scholar 

  • McDonough WF, Sun S (1995) The composition of the Earth. Chem Geol 120: 223–253

    Article  Google Scholar 

  • McInnes BIA, Cameron EM (1994) Carbonated, alkaline hybridizing melts from a sub-arc environment: mantle wedge samples from the Tabar-Lihir-Feni arc, Papua New Guinea. Earth Planet Sci Lett 122: 125–141

    Article  Google Scholar 

  • McInnes BIA, Grégoire M, Binns RA, Herzig PM, Hannington MD (2001) Hydrous metasomatism of oceanic sub-arc mantle, Lihir, Papua New Guinea: petrology and geochemistry of fluid-metasomatised mantle wedge xenoliths. Earth Planet Sci Lett 188: 169–183

    Article  Google Scholar 

  • Mibe K, Fujii T, Yasuda A (1998) Connectivity of aqueous fluid in the Earth’s upper mantle. Geophys Res Lett 25: 1233–1236

    Article  Google Scholar 

  • Mibe K, Fujii T, Yasuda A (2002) Composition of aqueous fluid coexisting with mantle minerals at high pressure and its bearing on the differentiation of the Earth’s mantle. Geochim Cosmochim Acta 66: 2273–2285

    Article  Google Scholar 

  • Navon O, Stolper EM (1987) Geochemical consequences of melt percolation: the upper mantle as a chromatographic column. J Geol 95: 285–307

    Google Scholar 

  • Niu Y, Langmuir CH and Kinzler RJ (1997) The origin of abyssal peridotites; a new perspective. Earth Planet Sci Lett 152: 251–265

    Article  Google Scholar 

  • O’Hara MJ, Saunders MJ, Mercy, ELP (1975) Garnet-peridotite primary ultrabasic magma and eclogite; interpretation of the upper mantle process in kimberlite. Phys Chem Earth 9: 571–604

    Article  Google Scholar 

  • O’Neill HS (1980) An experimental study of Fe-Mg partitioning between garnet and olivine and its calibration as a geothermometer: corrections. Contrib Mineral Petrol 72: 337

    Article  Google Scholar 

  • O’Neill HS, Wood BJ (1979) An experimental study of Fe-Mg partitioning between garnet and olivine and its calibration as a geothermometer. Contrib Mineral Petrol 70: 59–70

    Article  Google Scholar 

  • Parman SW, Grove TL, De Wit MJ, Dann JC (2004) A subduction origin for komatiites and cratonic lithospheric mantle. S Afr J Geol 107: 107–118

    Article  Google Scholar 

  • Pearson DG, Carlson RW, Shirey SB, Boyd FR, Nixon PH (1995a) Stabilisation of Archaean lithospheric mantle; a Re-Os isotope study of peridotite xenoliths from the Kaapvaal Craton. Earth Planet Sci Lett 134: 341–357

    Article  Google Scholar 

  • Pearson DG, Shirey SB, Carlson RW, Boyd FR, Pokhilenko NP, Shimizu N (1995b) Re-Os, Sm-Nd, and Rb-Sr isotope evidence for thick Archaean lithospheric mantle beneath the Siberian craton modified by multistage metasomatism. Geochim Cosmochim Acta 59: 959–977

    Google Scholar 

  • Pokhilenko NP, Sobolev NV, Boyd FR, Pearson DG, Shimizu N (1993) Megacrystalline pyrope peridotites in the lithosphere of the Siberian Platform; mineralogy, geochemical peculiarities and the problem of their origin. Russian Geol Geophys 34: 56–67

    Google Scholar 

  • Poujol M, Robb LJ, Annhaeusser CJ, Gericke B (2003) A review of the geochronological constraints on the evolution of the Kaapvaal Craton, South Africa. Precambrian Res 127: 181–213

    Article  Google Scholar 

  • Prouteau G, Scaillet B, Pichavant M, Maury R (2001) Evidence for mantle metasomatism by hydrous silicic melts derived from subducted crust. Nature 410: 197–200

    Article  PubMed  Google Scholar 

  • Rapp RP, Shimizu N, Norman MD, Applegate GS (1999) Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 38 GPa. Chem Geol 160: 335–356

    Article  Google Scholar 

  • Richardson SH, Gurney JJ, Erlank AJ, Harris JW (1984) Origin of diamonds in old enriched mantle. Nature 310: 198–202

    Article  Google Scholar 

  • Richardson SH, Erlank AJ, Hart SR (1985) Kimberlite-borne garnet peridotite xenoliths from old enriched subcontinental lithosphere. Earth Planet Sci Lett 75: 116–128

    Article  Google Scholar 

  • Richardson SH, Shirey S B, Harris JW, Carlson RW (2001) Archean subduction recorded by Re-Os isotopes in eclogitic sulfide inclusions in Kimberley diamonds. Earth Planet Sci Lett 191: 257–266

    Article  Google Scholar 

  • Rudnick RL, McDonough WF, Orpin A (1994) Northern Tanzanian peridotite xenoliths: a comparison with Kaapvaal peridotites and inferences on metasomatic interactions. In: Meyer HOA, Leonardos O (eds) Kimberlites, related rocks and mantle xenoliths, Vol 1 Proc 5th Internat Kimberlite Conf CPRM Brasilia pp 336–353

  • Rudnick RL, McDonough WF, O’Connell RJ (1998) Thermal structure, thickness and composition of continental lithosphere. Chem Geol 145: 395–411

    Article  Google Scholar 

  • Saltzer RL, Chatterjee N, Grove TL (2001) The spatial distribution of garnets and pyroxenes in mantle peridotites; pressure-temperature history of peridotites from the Kaapvaal Craton. J Petrol 42:2215–2229

    Article  Google Scholar 

  • Schiano P, Clochiatti R, Shimizu N, Maury RC, Jochum KP, Hoffman AW (1995) Hydrous, silica rich melts in the sub-arc mantle and their relationship with erupted arc lavas. Nature 377: 595–600

    Article  Google Scholar 

  • Schmidt MW (1996) Experimental constraints on recycling of potassium from subducted oceanic crust. Science 270: 625–627

    Google Scholar 

  • Schmitz MD, Bowring SA, de Wit MJ, Gartz V (2004) Neoarchean continent collision in the western Kaapvaal craton, southern Africa and its implications for the stabilization of continental lithosphere. Earth Planet Sci Lett 222: 363–376

    Article  Google Scholar 

  • Schneider M E, Eggler D H (1986) Fluids in equilibrium with peridotite minerals: implications for mantle metasomatism. Geochim Cosmoschim Acta 50: 711–724

    Article  Google Scholar 

  • Sekine T, Wyllie PJ (1982) The system granite – peridotite – H2O at 30 kbar, with applications to hybridization in subduction zone magmatism. Contrib Mineral Petrol 81: 190–202

    Article  Google Scholar 

  • Shapiro SS, Hager B H, Jordan T H (1999) Stability and dynamics of the continental tectosphere. Lithos 48: 115–133

    Article  Google Scholar 

  • Shen AH, Keppler H (1997) Direct observation of complete miscibility on the albite-H2O system. Nature 385: 710–712

    Article  Google Scholar 

  • Shimizu N (1975) Rare earth elements in garnets and clinopyroxenes from garnet lherzolite nodules in kimberlites. Earth Planet Sci Lett 25: 26–32

    Article  Google Scholar 

  • Shimizu N, Richardson SH (1987) Trace element abundance patterns of garnet inclusions in peridotite-suite diamonds. Geochim Cosmochim Acta 51: 755–758

    Article  Google Scholar 

  • Shimizu N, Pokhilenko NP, Boyd FR, Pearson DG (1999) Trace element characteristics of garnet dunites/harzburgites, host rocks for Siberian peridotitic diamonds. Gurney JJ, Gurney JL, Pascoe MD, Richardson SH (eds) The P.H. Nixon Volume Proc 7th Internat Kimberlite Conf. Red Roof Design, Cape Town, pp 773–782

    Google Scholar 

  • Shirey SB, Harris JW, Richardson SH, Fouch MJ, James DE, Cartigny P, Deines P, Viljoen F (2002) Diamond genesis, seismic structure, and evolution of the Kaapvaal-Zimbabwe Craton. Science 297: 1683–1686

    Article  PubMed  Google Scholar 

  • Simon NSC, Irvine GJ, Davies GR, Pearson DG, Carlson RW (2003a) The origin of garnet and clinopyroxene in “depleted” Kaapvaal peridotites. Lithos 71: 289–322

    Article  Google Scholar 

  • Simon NSC, Carlson R W, Davies G R, Nowell G M, Pearson D G (2003b) Os-Sr-Nd-Hf isotope evidence for the ancient depletion and subsequent multistage enrichment history of the Kaapvaal cratonic lithosphere Extd Abstrs 8th Internat Kimberlite Conf Victoria Canada, CD unpaginated

  • Smith D (2000) Insights into the evolution of the uppermost continental mantle from xenolith localities on and near the Colorado Plateau and regional comparisons. J Geophys Res 105: 16,769–16,781

    Google Scholar 

  • Smith D, Riter JCA, Mertzman SA (1999) Water-rock interactions, orthopyroxene growth, and Si-enrichment in the mantle: evidence in xenoliths from the Colorado Plateau, southwestern United States. Earth Planet Sci Lett 165: 45–54

    Article  Google Scholar 

  • Smith D, Connelly JN, Manser K, Moser D, Housh T, McDowell F, Mack LE (2004) Evolution of Navajo eclogites and hydration of the mantle below the Colorado Plateau, southwestern United States. Geochem Geophys Geosystems 5 (4): Q04005 doi:10.1029/2003GC000675

  • Stachel T, Viljoen KS, Brey GP, Harris JW (1998) Metasomatic processes in lherzolitic and harzburgitic domains of diamondiferous lithospheric mantle: REE in garnets from xenoliths and inclusions in diamonds. Earth Planet Sci Lett 159: 1–12

    Article  Google Scholar 

  • Stachel T, Harris JW, Brey GP (1999) REE patterns of peridotitic and eclogitic inclusions in diamonds from Mwadui (Tanzania). In. Gurney JJ, Gurney JL, Pascoe MD, Richardson SH (eds) The NixonVolume Proc 7th Internat Kimberlite Conf, Red Roof Design, Cape Town, pp 829–835

    Google Scholar 

  • Stachel T, Aulbach S, Brey GP, Harris JW, Leost I, Tappert R, Viljoen KS (2004) The trace element composition of silicate inclusions in diamonds: a review. Lithos 77:1–21

    Article  Google Scholar 

  • Stalder R, Foley SF, Brey GP, Horn I (1998) Mineral-aqueous fluid partitioning of trace elements at 900–1200°C and 30–57 GPa: new experimental data for garnet, clinopyroxene, and rutile, and implications for mantle metasomatism. Geochim Cosmochim Acta 62: 1781–1801

    Article  Google Scholar 

  • Stalder R, Ulmer P, Thompson AB, Günther D (2001) High pressure fluids in the system MgO-SiO2-H2O under upper mantle conditions. Contrib Mineral Petrol 140: 607–618

    Google Scholar 

  • Tomoaki M, Arai S, Green DH (2003) Evolution of low-Al orthopyroxene in the Horoman Peridotite Japan; an unusual indicator of metasomatizing fluids. J Petrol 44: 1237–1246

    Article  Google Scholar 

  • Wagner TP, Grove TL (1998) Melt/harzburgite reaction in the petrogenesis of tholeiitic magma from Kilauea Volcano, Hawaii. Contrib Mineral Petrol 131: 1–12

    Article  Google Scholar 

  • Walker RJ, Carlson RW, Shirey SB, Boyd FR (1989) Os, Sr, Nd, and Pb isotope systematics of southern African peridotite xenoliths: implications for the chemical evolution of subcontinental mantle. Geochim Cosmochim Acta 53: 1583–1595

    Article  Google Scholar 

  • Walter MJ (1998) Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J Petrol 39: 29–60

    Article  Google Scholar 

  • Walter MJ (1999) Melting residues of fertile peridotite and the origin of cratonic lithosphere. In Fei Y, Bertka CM, Mysen BO (eds) Mantle petrology: field observations and high pressure experimentation: a tribute to Francis R (Joe) Boyd Geochemical Soc Spec Publ 6: 225–239

  • Walter MJ (2004) Melt extraction and compositional variability in mantle lithosphere. In: Carlson RW (ed) The Mantle and Core, Vol 2 Treatise on Geochemistry (eds HD Holland and KK Turekian), Elsevier-Pergamon, Oxford, pp 363–394

    Google Scholar 

  • Wunder B, Melzer S (2003) Experimental evidence on phlogopite mantle metasomatism induced by phengite dehydration. Eur J Mineral 15: 641–647

    Article  Google Scholar 

  • Wyllie PJ, Carroll MR, Johnston AD, Rutter MJ, Sekine T, Van der Laan SR (1989) Interactions among magmas and rocks in subduction zone regions: experimental studies from slab to mantle to crust. Eur J Mineral 1: 165–179

    Google Scholar 

  • Wyllie PJ, Ryabchikov ID (2000) Volatile components, magmas, and critical fluids in upwelling mantle. J Petrol 41: 1195–1206

    Article  Google Scholar 

  • Zanetti A, Mazzucchelli M, Rivalenti G, Vannucci R (1999) The Finero phlogopite-peridotite massif: an example of subduction-related metasomatism. Contrib Mineral Petrol 134: 107–122

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by US National Science Foundation grants EAR-9526702, EAR-9526840, EAR-0003533 and EAR-0310330. DRB gratefully acknowledges support at MIT from a Crosby Fellowship. We thank Sam Bowring (MIT) for discussions, Anton le Roex (University of Cape Town) for hosting the ICP-MS analyses in his laboratory, the Carnegie Institution of Washington for access to electron microprobe facilities, and De Beers Consolidated Mines for field support and permission to sample the Kimberley dumps.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. R. Bell.

Additional information

Communicated by J. Hoefs

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bell, D.R., Grégoire, M., Grove, T.L. et al. Silica and volatile-element metasomatism of Archean mantle: a xenolith-scale example from the Kaapvaal Craton. Contrib Mineral Petrol 150, 251–267 (2005). https://doi.org/10.1007/s00410-005-0673-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-005-0673-8

Keywords

Navigation