Log in

Dobutamine Enhances Alveolar Fluid Clearance in a Rat Model of Acute Lung Injury

  • Published:
Lung Aims and scope Submit manuscript

Abstract

Acute lung injury (ALI) and its most severe form, acute respiratory distress syndrome (ARDS), remain leading factors for morbidity and mortality in critically ill patients. A significant aspect of ALI and ARDS is impaired alveolar fluid clearance (AFC). Improvements in therapies for these types of respiratory illnesses will require an understanding of the mechanisms that control AFC. The present study was designed to determine whether the administration of dobutamine decreases pulmonary edema and stimulates AFC in a rat model of lipopolysaccharide-induced lung injury. Adult male Sprague–Dawley rats were randomly divided into three groups: control, lipopolysaccharide, and lipopolysaccharide + dobutamine. The effect of dobutamine on AFC and the expression of aquaporin-1 and aquaporin-5 were examined. Lipopolysaccharide administration results in significant lung injury with impaired AFC, while dobutamine improves alveolar fluid reabsorption with elevation of aquaporin-1 and aquaporin-5. Our study indicates that dobutamine may enhance alveolar fluid reabsorption by increasing the expression of aquaporin-1 and aquaporin-5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Costa EL, Schettino IA, Schettino GP (2006) The lung in sepsis: guilty or innocent? Endocr Metab Immune Disord Drug Targets 6:213–216

    PubMed  CAS  Google Scholar 

  2. Frutos-Vivar F, Ferguson ND, Esteban A (2006) Epidemiology of acute lung injury and acute respiratory distress syndrome. Semin Respir Crit Care Med 27:327–336

    Article  PubMed  Google Scholar 

  3. Ware LB, Michel A, Mattha Y (2001) Alveolar fluid clearance is impaired in the majority of patients with acute lung injury and the acute respiratory distress syndrome. Am J Respir Crit Care Med 163:1376–1383

    PubMed  CAS  Google Scholar 

  4. Rojas M, Woods CR, Mora AL, Xu J, Brigham KL (2005) Endotoxin-induced lung injury in mice: structural, functional, and biochemical responses. Am J Physiol Lung Cell Mol Physiol 288:L333–L341

    Article  PubMed  CAS  Google Scholar 

  5. Sakuma T, Tuchihara C, Ishigaki M, Osanai K, Nambu Y, Toga H, Takahashi K, Ohya N, Kurihara T, Matthay MA (2001) Denopamine, a beta (1)-adrenergic agonist, increases alveolar fluid clearance in ex vivo rat and guinea pig lungs. J Appl Physiol 90(1):10–16

    PubMed  CAS  Google Scholar 

  6. Sakuma T, Hida M, Nambu Y, Osanai K, Toga H, Takahashi K, Ohya N, Inoue M, Watanabe Y (2001) Effects of hypoxia on alveolar fluid transport capacity in rat lungs. J Appl Physiol 91:1766–1774

    PubMed  CAS  Google Scholar 

  7. Sakuma T, Sagawa M, Hida M, Nambu Y, Osanai K, Toga H, Takahashi K, Ohya N, Matthay MA (2002) Time-dependent effect of pneumonectomy on alveolar epithelial fluid clearance in rat lungs. J Thorac Cardiovasc Surg 124:668–674

    Article  PubMed  Google Scholar 

  8. Ma T, Yang B, Gillespie A, Carlson EJ, Epstein CJ, Verkman AS (1998) Severely impaired urinary concentrating ability in transgenic mice lacking aquaporin-1 water channels. J Biol Chem 273:4296–4299

    Article  PubMed  CAS  Google Scholar 

  9. Dellinger RP, Levy MM, Carlet JM, Bion J, Parker MM, Jaeschke R, Reinhart K, Angus DC, Brun-Buisson C, Beale R, Calandra T, Dhainaut JF, Gerlach H, Harvey M, Marini JJ, Marshall J, Ranieri M, Ramsay G, Sevransky J, Thompson BT, Townsend S, Vender JS, Zimmerman JL, Vincent JL, International Surviving Sepsis Campaign Guidelines Committee, American Association of Critical-Care Nurses, American College of Chest Physicians, American College of Emergency Physicians, Canadian Critical Care Society, European Society of Clinical Microbiology and Infectious Diseases, European Society of Intensive Care Medicine, European Respiratory Society, International Sepsis Forum, Japanese Association for Acute Medicine, Japanese Society of Intensive Care Medicine, Society of Critical Care Medicine, Society of Hospital Medicine, Surgical Infection Society, World Federation of Societies of Intensive and Critical Care Medicine (2008) Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock. Crit Care Med 36(1):296-327

    Google Scholar 

  10. Mutlu GM, Dumasius V, Burhop J, McShane PJ, Meng FJ, Welch L, Dumasius A, Mohebahmadi N, Thakuria G, Hardiman K, Matalon S, Hollenberg S, Factor P (2004) Upregulation of alveolar epithelial active Na+ transport is dependent on beta2-adrenergic receptor signaling. Circ Res 94:1091–1100

    Article  PubMed  CAS  Google Scholar 

  11. Saldias FJ, Lecuona E, Comellas AP, Ridge KM, Rutschman DH, Sznajder JI (2000) beta-adrenergic stimulation restores rat lung ability to clear edema in ventilator-associated lung injury. Am J Respir Crit Care Med 162:282–287

    PubMed  CAS  Google Scholar 

  12. Sakuma T, Hida M, Nambu Y, Osanai K, Toga H, Takahashi K, Ohya N, Inoue M, Watanabe Y (2001) Beta1-adrenergic agonist is a potent stimulator of alveolar fluid clearance in hyperoxic rat lungs. Jpn J Pharmacol 85(2):161–166

    Article  PubMed  CAS  Google Scholar 

  13. Randrianarison N, Escoubet B, Ferreira C, Fontayne A, Fowler-Jaeger N, Clerici C, Hummler E, Rossier BC, Planès C (2007) beta-Liddle mutation of the epithelial sodium channel increases alveolar fluid clearance and reduces the severity of hydrostatic pulmonary edema in mice. J Physiol 582(Pt 2):777–788

    Article  PubMed  CAS  Google Scholar 

  14. Ware LB, Mathay MA (2000) The acute respiratory distress syndrome. N Engl J Med 342:1334–1349

    Article  PubMed  CAS  Google Scholar 

  15. Domeniconi RF, Orsi AM, Justulin LA, Leme Beu CC, Felisbino SL (2007) Aquaporin 9 (AQP9) localization in the adult dog testis excurrent ducts by immunohistochemistry. Anat Rec (Hoboken) 290:1519–1525

    CAS  Google Scholar 

  16. Woo J, Chae YK, Jang SJ, Kim MS, Baek JH, Park JC, Trink B, Ratovitski E, Lee T, Park B, Park M, Kang JH, Soria JC, Lee J, Califano J, Sidransky D, Moon C (2008) Membrane trafficking of AQP5 and cAMP dependent phosphorylation in bronchial epithelium. Biochem Biophys Res Commun 366:321–327

    Article  PubMed  CAS  Google Scholar 

  17. Kreda SM, Gynn MC, Fenstermacher DA, Boucher RC, Gabriel SE (2001) Expression and localization of epithelial aquaporins in the adult human lung. Am J Respir Cell Mol Biol 24:224–234

    PubMed  CAS  Google Scholar 

  18. Agre P (2004) Aquaporin water channels (Nobel Lecture). Angew Chem Int Ed Engl 43:4278–4290

    Article  PubMed  CAS  Google Scholar 

  19. Dobbs LG, Gonzalez MA, Matthay EP, Carter LA, Verkman AS (1998) Highly water-permeable type I alveolar epithelial cells confer high water permeability between the airspace and vasculature in rat lung. Proc Natl Acad Sci USA 95:2991–2996

    Article  PubMed  CAS  Google Scholar 

  20. Su X, Song Y, Jiang J, Bai C (2004) The role of aquaporin-1 (AQP1) expression in a murine model of lipopolysaccharide-induced acute lung injury. Respir Physiol Neurobiol 142:1–11

    Article  PubMed  CAS  Google Scholar 

  21. Tsubota K, Hirai S, King LS, Agre P, Ishida N (2001) Defective cellular trafficking of lacrimal gland aquaporin-5 in Sjögren’s syndrome. Lancet 357:688–689

    Article  PubMed  CAS  Google Scholar 

  22. Funaki H, Yamamoto T, Koyama Y, Kondo D, Yaoita E, Kawasaki K, Kobayashi H, Sawaguchi S, Abe H, Kihara I (1998) Localization and expression of AQP5 in cornea, serous salivary glands and pulmonary epithelial cells. Am J Physiol 275:C1151–C1157

    PubMed  CAS  Google Scholar 

  23. Towne JE, Harrod KS, Krane CM, Menon AG (2000) Decreased expression of aquaporin (AQP)1 and AQP5 in mouse lung after acute viral infection. Am J Respir Cell Mol Biol 22:34–44

    PubMed  CAS  Google Scholar 

  24. Hoffert JD, Chou CL, Fenton RA, Knepper MA (2005) Calmodulin is required for vasopressin-stimulated increase in cyclic AMP production in inner medullary collecting duct. J Biol Chem 280:13624–13630

    Article  PubMed  CAS  Google Scholar 

  25. Tamma G, Carmosino M, Svelto M, Valenti G (2005) Bradykinin signaling counteracts cAMP-elicited aquaporin 2 translocation in renal cells. J Am Soc Nephrol 16(10):2881–2889

    Article  PubMed  CAS  Google Scholar 

  26. Sidhaye V, Hoffert JD, King LS (2005) cAMP has distinct acute and chronic effects on aquaporin-5 in lung epithelial cells. J Biol Chem 280:3590–3596

    Article  PubMed  CAS  Google Scholar 

  27. Liggett SB, Bouvier M, Hausdorff WP, O’Dowd B, Caron MG, Lefkowitz RJ (1989) Altered patterns of agonist-stimulated cAMP accumulation in cells expressing mutant beta 2-adrenergic receptors lacking phosphorylation sites. Mol Pharmacol 36:641–646

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by an ICU grant from the Sheng**g Hospital, China Medical University (No. 20072101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Min Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, XM., Wang, HY., Li, GF. et al. Dobutamine Enhances Alveolar Fluid Clearance in a Rat Model of Acute Lung Injury. Lung 187, 225–231 (2009). https://doi.org/10.1007/s00408-009-9155-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-009-9155-5

Keywords

Navigation