Log in

Low fetal fraction and adverse pregnancy outcomes— systematic review of the literature and metanalysis

  • Review
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Purpose

While cell-free DNA (cfDNA) screening has emerged as a screening modality for common aneuploidies, further research and several publications over the past decade suggested some correlation between the low concentrations of cfDNA and a number of pregnancy-related complications. The primary goal of this systematic review and meta-analysis was to assess the potential value of low-ff levels in the prediction of subsequent PE/PIH, GDM, SGA/FGR, and PTB. The meta-analysis results aim at summarizing the currently available literature data and determining the clinical relevance of this biochemical marker and the potential necessity for additional investigation of its utility in complications other than the detection of common aneuploidies.

Methods

This systematic review and meta-analysis was designed according to the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines. It included all observational studies that reported low -ff levels after the performance of non-invasive prenatal testing (NIPT) as part of the screening for chromosomal abnormalities and their association with adverse pregnancy outcomes, namely the subsequent development of hypertensive disorders of pregnancy, gestational diabetes, preterm birth, and the detection of small for gestational age fetuses or growth-restricted fetuses. The Medline (1966–2041), Scopus (2004–2024), Clinicaltrials.gov (2008–2024), EMBASE (1980–2024), Cochrane Central Register of Controlled Trials CENTRAL (1999–2024) and Google Scholar (2004–2024) databases were used in our primary search along with the reference lists of electronically retrieved full-text papers. The date of our last search was set at February 29, 2024.

Results

Our search identified 128 potentially relevant studies and,overall, 8 studies were included in the present systematic review that enrolled a total of 72,507 patients. Low ff of cfDNA cfDNA was positively associated with HDP (OR 1.66, 95% CI 1.34, 2.06, I-square test: 56%). Low ff of cfDNA was positively associated with GDM (OR 1.27, 95% CI 1.03, 1.56, I-square test: 76%). Furthermore, low ff levels were positively associated with SGA/FGR (OR 1.63, 95% CI 1.32, 2.03, I-square test: 0%). Low ff levels were positively correlated with the risk for PTB but the association did not manage to reach a statistical significant level (OR 1.22, 95% CI 0.89, 1.67, I-square test: 66%).

Conclusion

Our study suggests that low ff is associated with increased risk of adverse perinatal outcomes, including PE/PIH, GDM, and SGA/FGR. However, the relationship between ff and PTB remains unclear due to conflicting evidence. It should be emphasized that further research is needed to reveal the underlying mechanisms behind the association of low ff with adverse pregnancy outcomes and explore its potential role in an overall prenatal screening, which could potentially not be limited to detecting aneuploidies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Lo YM, Corbetta N, Chamberlain PF, Rai V, Sargent IL, Redman CW, Wainscoat JS (1997) Presence of fetal DNA in maternal plasma and serum. Lancet 350(9076):485–487. https://doi.org/10.1016/S0140-6736(97)02174-0

    Article  CAS  PubMed  Google Scholar 

  2. Warsof SL, Larion S, Abuhamad AZ (2015) Overview of the impact of noninvasive prenatal testing on diagnostic procedures. Prenat Diagn 35(10):972–979. https://doi.org/10.1002/pd.4601

    Article  PubMed  Google Scholar 

  3. Hestand MS, Bessem M, van Rijn P, de Menezes RX, Sie D, Bakker I, Boon EMJ, Sistermans EA, Weiss MM (2019) Fetal fraction evaluation in non-invasive prenatal screening (NIPS). Eur J Hum Genet. https://doi.org/10.1038/s41431-018-0271-7

    Article  PubMed  Google Scholar 

  4. Gregg AR, Skotko BG, Benkendorf JL, Monaghan KG, Bajaj K, Best RG, Klugman S, Watson MS (2016) Noninvasive prenatal screening for fetal aneuploidy, 2016 update: a position statement of the American College of Medical Genetics and Genomics. Genet Med 18(10):1056–1065. https://doi.org/10.1038/gim.2016.97

    Article  CAS  PubMed  Google Scholar 

  5. Gil MM, Accurti V, Santacruz B, Plana MN, Nicolaides KH (2017) Analysis of cell-free DNA in maternal blood in screening for aneuploidies: updated meta-analysis. Ultrasound Obstet Gynecol. https://doi.org/10.1002/uog.17484

    Article  PubMed  Google Scholar 

  6. Al Nakib M, Desbrière R, Bonello N, Bretelle F, Boubli L, Gabert J, Levy-Mozziconacci A (2009) Total and fetal cell-free DNA analysis in maternal blood as markers of placental insufficiency in intrauterine growth restriction. Fetal Diagn Ther 26(1):24–28. https://doi.org/10.1159/000236355

    Article  CAS  PubMed  Google Scholar 

  7. Miranda ML, Macher HC, Muñoz-Hernández R, Vallejo-Vaz A, Moreno-Luna R, Villar J, Guerrero JM, Stiefel P (2013) Role of circulating cell-free DNA levels in patients with severe preeclampsia and HELLP syndrome. Am J Hypertens 26(12):1377–1380. https://doi.org/10.1093/ajh/hpt187

    Article  CAS  PubMed  Google Scholar 

  8. Dugoff L, Barberio A, Whittaker PG, Schwartz N, Sehdev H, Bastek JA (2016) Cell-free DNA fetal fraction and preterm birth. Am J Obstet Gynecol 215(2):231.e1–7. https://doi.org/10.1016/j.ajog.2016.02.009

    Article  CAS  PubMed  Google Scholar 

  9. Rolnik DL, da Silva CF, Lee TJ, Schmid M, McLennan AC (2018) Association between fetal fraction on cell-free DNA testing and first-trimester markers for pre-eclampsia. Ultrasound Obstet Gynecol 52(6):722–727. https://doi.org/10.1002/uog.18993

    Article  CAS  PubMed  Google Scholar 

  10. Taglauer ES, Wilkins-Haug L, Bianchi DW (2014) Review: cell-free fetal DNA in the maternal circulation as an indication of placental health and disease. Placenta Suppl. https://doi.org/10.1016/j.placenta.2013.11.014

    Article  Google Scholar 

  11. Sapantzoglou I, Gallardo Arozena M, Dragoi V, Akolekar R, Nicolaides KH, Syngelaki A (2022) Fetal fraction of cell free DNA in screening for hypertensive disorders at 11–13 weeks. J Matern Fetal Neonatal Med 35(25):5363–5368. https://doi.org/10.1080/14767058.2021.1879043

    Article  CAS  PubMed  Google Scholar 

  12. Zou Y, **e H, Hu J, Cui L, Liu G, Wang L, Xue M, Yan J, Gao X, Gao Y, Chen ZJ (2022) The low fetal fraction at the first trimester is associated with adverse pregnancy outcomes in IVF singleton pregnancies with single embryo transfer from frozen cycles. J Assist Reprod Genet. https://doi.org/10.1007/s10815-022-02488-y

    Article  PubMed  PubMed Central  Google Scholar 

  13. Becking EC, Scheffer PG, Henrichs J, Bax CJ, Crombag NMTH, Weiss MM, Macville MVE, Van Opstal D, Boon EMJ, Sistermans EA, Henneman L, Schuit E, Bekker MN (2023) Fetal fraction of cell-free DNA in noninvasive prenatal testing and adverse pregnancy outcomes: a nationwide retrospective cohort study of 56,110 pregnant women. Am J Obstet Gynecol. https://doi.org/10.1016/j.ajog.2023.12.008

    Article  PubMed  Google Scholar 

  14. Yuan X, Han X, Jia C, Zhou W, Yu B (2022) Low Fetal Fraction of cell free DNA at non-invasive prenatal screening increases the subsequent risk of preterm birth in uncomplicated singleton pregnancy. Int J Womens Health 13(14):889–897. https://doi.org/10.2147/IJWH.S364554.PMID:35860718;PMCID:PMC9289570

    Article  Google Scholar 

  15. Jakobsen TR, Clausen FB, Rode L, Dziegiel MH, Tabor A (2013) Identifying mild and severe preeclampsia in asymptomatic pregnant women by levels of cell-free fetal DNA. Transfusion 53(9):1956–1964. https://doi.org/10.1111/trf.12073

    Article  CAS  PubMed  Google Scholar 

  16. Gerson KD, Truong S, Haviland MJ, O’Brien BM, Hacker MR, Spiel MH (2019) Low fetal fraction of cell-free DNA predicts placental dysfunction and hypertensive disease in pregnancy. Pregnancy Hypertens. https://doi.org/10.1016/j.preghy.2019.04.002

    Article  PubMed  PubMed Central  Google Scholar 

  17. Madala D, Maktabi MA, Sabbagh R, Erfani H, Moon A, Van den Veyver IB (2022) Lower fetal fraction in clinical cell-free DNA screening results is associated with increased risk of hypertensive disorders of pregnancy. Prenat Diagn. https://doi.org/10.1002/pd.6221

    Article  PubMed  PubMed Central  Google Scholar 

  18. Clapp MA, Berry M, Shook LL, Roberts PS, Goldfarb IT, Bernstein SN (2020) Low fetal fraction and birth weight in women with negative first-trimester cell-free DNA screening. Am J Perinatol 37(1):86–91. https://doi.org/10.1055/s-0039-1700860

    Article  PubMed  Google Scholar 

  19. Danish Society of Obstetrics and Gynecology. Sandbjerg guidelines, 2012.

  20. Brown MA, Magee LA, Kenny LC, Karumanchi SA, McCarthy FP, Saito S, Hall DR, Warren CE, Adoyi G, Ishaku S (2018) Hypertensive disorders of pregnancy: isshp classification, diagnosis, and management recommendations for international practice. Hypertension. https://doi.org/10.1161/HYPERTENSIONAHA.117.10803

    Article  PubMed  Google Scholar 

  21. Gestational Hypertension and Preeclampsia (2020) ACOG practice bulletin, number 222. Obstet Gynecol 135(6):e237–e260. https://doi.org/10.1097/AOG.0000000000003891

    Article  Google Scholar 

  22. Diagnostic criteria and classification of hyperglycaemia first detected in pregnancy: a World Health Organization Guideline. Diabetes Res Clin Pract. 2014. https://doi.org/10.1016/j.diabres.2013.10.012

  23. International Association of Diabetes and Pregnancy Study Groups Consensus Panel; Metzger BE, Gabbe SG, Persson B, Buchanan TA, Catalano PA, Damm P, Dyer AR, Leiva Ad, Hod M, Kitzmiler JL, Lowe LP, McIntyre HD, Oats JJ, Omori Y, Schmidt MI. International association of diabetes and pregnancy study groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy. Diabetes Care. 2010. https://doi.org/10.2337/dc09-1848.

  24. ACOG Practice Bulletin No (2018) 190: Gestational diabetes mellitus. Obstet Gynecol 131(2):e49–e64. https://doi.org/10.1097/AOG.0000000000002501

    Article  Google Scholar 

  25. Fetal Growth Restriction (2021) ACOG Practice Bulletin, Number 227. Obstet Gynecol 137(2):e16–e28. https://doi.org/10.1097/AOG.0000000000004251

    Article  Google Scholar 

  26. Krishna I, Badell M, Loucks TL, Lindsay M, Samuel A (2016) Adverse perinatal outcomes are more frequent in pregnancies with a low fetal fraction result on noninvasive prenatal testing. Prenat Diagn 36(3):210–215. https://doi.org/10.1002/pd.4779

    Article  PubMed  Google Scholar 

  27. Suzumori N, Sekizawa A, Ebara T, Samura O, Sasaki A, Akaishi R, Wada S, Hamanoue H, Hirahara F, Izumi H, Sawai H, Nakamura H, Yamada T, Miura K, Masuzaki H, Yamashita T, Okai T, Kamei Y, Namba A, Murotsuki J, Tanemoto T, Fukushima A, Haino K, Tairaku S, Matsubara K, Maeda K, Kaji T, Ogawa M, Osada H, Nishizawa H, Okamoto Y, Kanagawa T, Kakigano A, Kitagawa M, Ogawa M, Izumi S, Katagiri Y, Takeshita N, Kasai Y, Naruse K, Neki R, Masuyama H, Hyodo M, Kawano Y, Ohba T, Ichizuka K, Nagamatsu T, Watanabe A, Shirato N, Yotsumoto J, Nishiyama M, Hirose T, Sago H (2018) Fetal cell-free DNA fraction in maternal plasma for the prediction of hypertensive disorders of pregnancy. Eur J Obstet Gynecol Reprod Biol 224:165–169. https://doi.org/10.1016/j.ejogrb.2018.03.048

    Article  CAS  PubMed  Google Scholar 

  28. Alberry MS, Maddocks DG, Hadi MA, Metawi H, Hunt LP, Abdel-Fattah SA, Avent ND, Soothill PW (2009) Quantification of cell free fetal DNA in maternal plasma in normal pregnancies and in pregnancies with placental dysfunction. Am J Obstet Gynecol 200(1):98.e1–6. https://doi.org/10.1016/j.ajog.2008.07.063

    Article  CAS  PubMed  Google Scholar 

  29. Zeybek YG, Günel T, Benian A, Aydınlı K, Kaleli S (2013) Clinical evaluations of cell-free fetal DNA quantities in pre-eclamptic pregnancies. J Obstet Gynaecol Res 39(3):632–640. https://doi.org/10.1111/j.1447-0756.2012.02011.x

    Article  CAS  PubMed  Google Scholar 

  30. Poon LC, Musci T, Song K, Syngelaki A, Nicolaides KH (2013) Maternal plasma cell-free fetal and maternal DNA at 11–13 weeks’ gestation: relation to fetal and maternal characteristics and pregnancy outcomes. Fetal Diagn Ther 33(4):215–223. https://doi.org/10.1159/000346806

    Article  CAS  PubMed  Google Scholar 

  31. Chan N, Smet ME, Sandow R, da Silva CF, McLennan A (2018) Implications of failure to achieve a result from prenatal maternal serum cell-free DNA testing: a historical cohort study. BJOG 125:848–855

    Article  CAS  PubMed  Google Scholar 

  32. Krishna I, Badell M, Loucks TL, Lindsay M, Samuel A (2016) Adverse perinatal outcomes are more frequent in pregnancies with a low fetal fraction result on noninvasive prenatal testing. Prenat Diagn. https://doi.org/10.1002/pd.4779

    Article  PubMed  Google Scholar 

  33. Quezada MS, Francisco C, Dumitrascu-Biris D, Nicolaides KH, Poon LC (2015) Fetal fraction of cell-free DNA in maternal plasma in the prediction of spontaneous preterm delivery. Ultrasound Obstet Gynecol 45:101–105

    Article  CAS  PubMed  Google Scholar 

  34. Stein W, Muller S, Gutensohn K, Emons G, Legler T (2013) Cell-free ¨ fetal DNA and adverse outcome in low risk pregnancies. Eur J Obstet Gynecol Reprod Biol 166:10–13

    Article  CAS  PubMed  Google Scholar 

  35. Illanes S, Gomez R, Fornes R, Figueroa-Diesel H, Schepeler M, Searovic P, Serra R, Perez A, Nien JK (2011) Free fetal DNA levels in patients at risk of preterm labour. Prenat Diagn 31:1082–1085

    Article  CAS  PubMed  Google Scholar 

  36. Ashoor G, Syngelaki A, Poon LC, Rezende JC, Nicolaides KH (2013) Fetal fraction in maternal plasma cell-free DNA at 11–13 weeks’ gestation: relation to maternal and fetal characteristics. Ultrasound Obstet Gynecol 41:26–32

    Article  CAS  PubMed  Google Scholar 

  37. Revello R, Sarno L, Ispas A, Akolekar R, Nicolaides KH (2016) Screening for trisomies by cell-free DNA testing of maternal blood: consequences of a failed result. Ultrasound Obstet Gynecol 47:698–704

    Article  CAS  PubMed  Google Scholar 

  38. Scott FP, Menezes M, Palma-Dias R, Nisbet D, Schluter P, da Silva CF et al (2017) Factors affecting cell-free DNA fetal fraction and the consequences for test accuracy. J Matern Fetal Neonatal Med. https://doi.org/10.1080/14767058.2017.1330881

    Article  PubMed  Google Scholar 

  39. Hopkins MK, Koelper N, Bender W, Durnwald C, Sammel M, Dugoff L (2020) Association between cell-free DNA fetal fraction and gestational diabetes. Prenat Diagn 40(6):724–727. https://doi.org/10.1002/pd.5671

    Article  CAS  PubMed  Google Scholar 

  40. Haghiac M, Vora N, Basu S et al (2012) Increased death of adipose cells, a path to release cell-free DNA into systemic circulation of obese women. Obesity 20(11):2213–2219

    Article  CAS  PubMed  Google Scholar 

  41. Gordijn SJ, Beune IM, Thilaganathan B, Papageorghiou A, Baschat AA, Baker PN, Silver RM, Wynia K, Ganzevoort W (2016) Consensus definition of fetal growth restriction: a Delphi procedure. Ultrasound Obstet Gynecol 48(3):333–339. https://doi.org/10.1002/uog.15884

    Article  CAS  PubMed  Google Scholar 

  42. Kagan KO, Sonek J, Kozlowski P (2022) Antenatal screening for chromosomal abnormalities. Arch Gynecol Obstet. https://doi.org/10.1007/s00404-022-06477-5

    Article  PubMed  PubMed Central  Google Scholar 

  43. Bender WR, Koelper NC, Sammel MD, Dugoff L (2019) Association of fetal fraction of cell-free dna and hypertensive disorders of pregnancy. Am J Perinatol 36(3):311–316. https://doi.org/10.1055/s-0038-1667374

    Article  PubMed  Google Scholar 

  44. Rolnik DL, O’Gorman N, Fiolna M, van den Boom D, Nicolaides KH, Poon LC (2015) Maternal plasma cell-free DNA in the prediction of pre-eclampsia. Ultrasound Obstet Gynecol 45(1):106–111. https://doi.org/10.1002/uog.14671

    Article  CAS  PubMed  Google Scholar 

  45. Gekas J, Boomer TH, Rodrigue MA, **nett KN, Bhatt S (2023) Use of cell-free signals as biomarkers for early and easy prediction of preeclampsia. Front Med (Lausanne) 24(10):1191163. https://doi.org/10.3389/fmed.2023.1191163.PMID:37293304;PMCID:PMC10244626

    Article  Google Scholar 

  46. De Borre M, Che H, Yu Q, Lannoo L, De Ridder K, Vancoillie L, Dreesen P, Van Den Ackerveken M, Aerden M, Galle E, Breckpot J, Van Keirsbilck J, Gyselaers W, Devriendt K, Vermeesch JR, Van Calsteren K, Thienpont B (2023) Cell-free DNA methylome analysis for early preeclampsia prediction. Nat Med 29(9):2206–2215. https://doi.org/10.1038/s41591-023-02510-5

    Article  CAS  PubMed  Google Scholar 

  47. Carbone IF, Conforti A, Picarelli S, Morano D, Alviggi C, Farina A (2020) Circulating nucleic acids in maternal plasma and serum in pregnancy complications: are they really useful in clinical practice? a systematic review. Mol Diagn Ther 24(4):409–431. https://doi.org/10.1007/s40291-020-00468-5

    Article  PubMed  Google Scholar 

  48. Krasnyi AM, Sadekova AA, Vtorushina VV, Кan NE, Tyutyunnik VL, Krechetova LV (2022) Extracellular DNA levels and cytokine profiles in preterm birth: a cohort study. Arch Gynecol Obstet 306(5):1495–1502. https://doi.org/10.1007/s00404-022-06456-w

    Article  CAS  PubMed  Google Scholar 

  49. Morano D, Rossi S, Lapucci C, Pittalis MC, Farina A (2018) Cell-free DNA (cfDNA) fetal fraction in early- and late-onset fetal growth restriction. Mol Diagn Ther 22(5):613–619. https://doi.org/10.1007/s40291-018-0353-9

    Article  CAS  PubMed  Google Scholar 

  50. Souza JP, Pileggi C, Cecatti JG (2007) Assessment of funnel plot asymmetry and publication bias in reproductive health meta-analyses: an analytic survey. Reprod Health 16(4):3. https://doi.org/10.1186/1742-4755-4-3.PMID:17437636;PMCID:PMC1855315

    Article  Google Scholar 

  51. Tang JL, Liu JL (2000) Misleading funnel plot for detection of bias in meta-analysis. J Clin Epidemiol 53(5):477–484. https://doi.org/10.1016/s0895-4356(99)00204-8

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Ioakeim Sapantzoglou: co-designed the project and co-wrote the manuscript; Maria Giourga: co-designed the project and co-wrote the manuscript; Vasilios Pergialiotis: supervised the project, wrote and revised the manuscript; Rafail Mantzioros: co-wrote the manuscript;Dimitrios Papageorgiou: co-wrote the manuscript; Maria Anastasia Daskalaki: supervised the project and revised the manuscript; Panagiotis Antsaklis: co-designed the project and revised the manuscript; Mariana Theodora:: co-designed the project and revised the manuscript; Nikolaos Thomakos: supervised the project and revised the manuscript; Georgios Daskalakis: supervised the project and revised the manuscript.

Corresponding author

Correspondence to Ioakeim Sapantzoglou.

Ethics declarations

Conflict of interest

None for all authors.

Ethical approval

This is an systematic review and meta-analysis study. No ethical approval is required.

Consent to participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sapantzoglou, I., Giourga, M., Pergialiotis, V. et al. Low fetal fraction and adverse pregnancy outcomes— systematic review of the literature and metanalysis. Arch Gynecol Obstet (2024). https://doi.org/10.1007/s00404-024-07638-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00404-024-07638-4

Keywords

Navigation