Log in

Antitumor activity of anlotinib in malignant melanoma: modulation of angiogenesis and vasculogenic mimicry

  • ORIGINAL PAPER
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Malignant melanoma presents a formidable challenge due to its aggressive metastatic behavior and limited response to current treatments. To address this, our study delves into the impact of anlotinib on angiogenesis and vasculogenic mimicry using malignant melanoma cells and human umbilical vein endothelial cells. Evaluating tubular structure formation, cell proliferation, migration, invasion, and key signaling molecules in angiogenesis, we demonstrated that anlotinib exerts a dose-dependent inhibition on tubular structures and effectively suppresses cell growth and invasion in both cell types. Furthermore, in a mouse xenograft model, anlotinib treatment resulted in reduced tumor growth and vascular density. Notably, the downregulation of VEGFR-2, FGFR-1, PDGFR-β, and PI3K underscored the multitargeted antitumor activity of anlotinib. Our findings emphasize the therapeutic potential of anlotinib in targeting angiogenesis and vasculogenic mimicry, contributing to the development of novel strategies for combating malignant melanoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data can be provided as needed.

References

  1. Arnold M, Singh D, Laversanne M et al (2022) Global burden of cutaneous melanoma in 2020 and projections to 2040. JAMA Dermatol 158(5):495–503. https://doi.org/10.1001/jamadermatol.2022.0160

    Article  PubMed  PubMed Central  Google Scholar 

  2. Fania L, Didona D, Di Pietro FR et al (2021) Cutaneous squamous cell carcinoma: from pathophysiology to novel therapeutic approaches. Biomedicines 9(2):171. https://doi.org/10.3390/biomedicines9020171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cheng X, Wang X, Nie K et al (2021) Systematic pan-cancer analysis identifies TREM2 as an immunological and prognostic biomarker. Front Immunol 12:646523. https://doi.org/10.3389/fimmu.2021.646523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Evidence reviews for surgical and histological excision margins for people with stage 0 to II melanoma: Melanoma: assessment and management. London: National Institute for Health and Care Excellence (NICE); July 2022.

  5. van Akkooi AC, Hauschild A, Long GV et al (2023) COLUMBUS-AD: phase III study of adjuvant encorafenib + binimetinib in resected stage IIB/IIC BRAF V600-mutated melanoma. Future Oncol 19(30):2017–2027. https://doi.org/10.2217/fon-2023-0414

    Article  CAS  PubMed  Google Scholar 

  6. Lavender V, Duarte J, Lusted C (2023) Comprehensive evaluation of a cutaneous T-cell lymphoma education webinar. Br J Nurs 32(10):S10–S16. https://doi.org/10.12968/bjon.2023.32.10.S10

    Article  PubMed  Google Scholar 

  7. Thrane K, Eriksson H, Maaskola J, Hansson J, Lundeberg J (2018) Spatially resolved transcriptomics enables dissection of genetic heterogeneity in stage III cutaneous malignant melanoma. Cancer Res 78(20):5970–5979. https://doi.org/10.1158/0008-5472.CAN-18-0747

    Article  CAS  PubMed  Google Scholar 

  8. Patel SP, Othus M, Chen Y et al (2023) Neoadjuvant-adjuvant or adjuvant-only pembrolizumab in advanced melanoma. N Engl J Med 388(9):813–823. https://doi.org/10.1056/NEJMoa2211437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Amaria RN, Postow M, Burton EM et al (2022) Neoadjuvant relatlimab and nivolumab in resectable melanoma [published correction appears in Nature. 2023 Mar;615(7953):E23]. Nature 611(7934):155–160. https://doi.org/10.1038/s41586-022-05368-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Luke JJ, Rutkowski P, Queirolo P et al (2022) Pembrolizumab versus placebo as adjuvant therapy in completely resected stage IIB or IIC melanoma (KEYNOTE-716): a randomised, double-blind, phase 3 trial. Lancet 399(10336):1718–1729. https://doi.org/10.1016/S0140-6736(22)00562-1

    Article  CAS  PubMed  Google Scholar 

  11. Lambertini M, Ricci C, Corti B et al (2023) Follicular colonization in melanocytic nevi and melanoma: a literature review. J Cutan Pathol 50(8):773–778. https://doi.org/10.1111/cup.14415

    Article  PubMed  Google Scholar 

  12. Rovera C, Berestjuk I, Lecacheur M et al (2022) Secretion of IL1 by dedifferentiated melanoma cells inhibits JAK1-STAT3-driven actomyosin contractility of lymph node fibroblastic reticular cells. Cancer Res 82(9):1774–1788. https://doi.org/10.1158/0008-5472.CAN-21-0501

    Article  CAS  PubMed  Google Scholar 

  13. Kayes D, Blacklock B (2022) Feline uveal melanoma review: our current understanding and recent research advances. Vet Sci 9(2):46. https://doi.org/10.3390/vetsci9020046

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lyu J, Miao Y, Yu F, Chang C, Guo W, Zhu H (2021) CDK4 and TERT amplification in head and neck mucosal melanoma. J Oral Pathol Med 50(10):971–978. https://doi.org/10.1111/jop.13180

    Article  CAS  PubMed  Google Scholar 

  15. Ahmed F, Tseng HY, Ahn A et al (2022) Repurposing melanoma chemotherapy to activate inflammasomes in the treatment of BRAF/MAPK inhibitor resistant melanoma. J Invest Dermatol 142(5):1444-1455.e10. https://doi.org/10.1016/j.jid.2021.09.030

    Article  CAS  PubMed  Google Scholar 

  16. Wróblewska-Łuczka P, Grabarska A, Florek-Łuszczki M, Plewa Z, Łuszczki JJ (2021) Synergy, additivity, and antagonism between cisplatin and selected coumarins in human melanoma cells. Int J Mol Sci 22(2):537. https://doi.org/10.3390/ijms22020537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu M, Xu Y (2022) Gene identification and potential drug therapy for drug-resistant melanoma with bioinformatics and deep learning technology. Dis Markers 2022:2461055. https://doi.org/10.1155/2022/2461055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li J, Qi D, Hsieh TC, Huang JH, Wu JM, Wu E (2021) Trailblazing perspectives on targeting breast cancer stem cells. Pharmacol Ther 223:107800. https://doi.org/10.1016/j.pharmthera.2021.107800

    Article  CAS  PubMed  Google Scholar 

  19. Kudelova E, Smolar M, Holubekova V et al (2022) Genetic heterogeneity, tumor microenvironment and immunotherapy in triple-negative breast cancer. Int J Mol Sci 23(23):14937. https://doi.org/10.3390/ijms232314937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhu J, Wu Y, Yu Y, Li Y, Shen J, Zhang R (2022) MYBL1 induces transcriptional activation of ANGPT2 to promote tumor angiogenesis and confer sorafenib resistance in human hepatocellular carcinoma. Cell Death Dis 13(8):727. https://doi.org/10.1038/s41419-022-05180-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yin Z, Wang L (2023) Endothelial-to-mesenchymal transition in tumour progression and its potential roles in tumour therapy. Ann Med 55(1):1058–1069. https://doi.org/10.1080/07853890.2023.2180155

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zhao Y, Shen M, Wu L et al (2023) Stromal cells in the tumor microenvironment: accomplices of tumor progression? Cell Death Dis 14(9):587. https://doi.org/10.1038/s41419-023-06110-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yang MH, Wang YS, Shi XQ, Zhao XW, Li B (2022) Arsenic trioxide restrains lung cancer growth and metastasis by blocking the calcineurin-NFAT pathway by upregulating DSCR1. Curr Cancer Drug Targ 22(10):854–864. https://doi.org/10.2174/1568009622666220629154619

    Article  CAS  Google Scholar 

  24. Arévalo B, Ben Hassine A, Valverde A et al (2021) Electrochemical immunoplatform to assist in the diagnosis and classification of breast cancer through the determination of matrix-metalloproteinase-9. Talanta 225:122054. https://doi.org/10.1016/j.talanta.2020.122054

    Article  CAS  PubMed  Google Scholar 

  25. Costa PAC, Silva WN, Prazeres PHDM et al (2021) Chemogenetic modulation of sensory neurons reveals their regulating role in melanoma progression. Acta Neuropathol Commun 9(1):183. https://doi.org/10.1186/s40478-021-01273-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Stepp MA, Menko AS (2021) Immune responses to injury and their links to eye disease. Transl Res 236:52–71. https://doi.org/10.1016/j.trsl.2021.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Voges HK, Foster SR, Reynolds L et al (2023) Vascular cells improve functionality of human cardiac organoids. Cell Rep 42(5):112322. https://doi.org/10.1016/j.celrep.2023.112322

    Article  CAS  PubMed  Google Scholar 

  28. Pan L, Cheng Y, Yang W et al (2023) Nintedanib ameliorates bleomycin-induced pulmonary fibrosis, inflammation, apoptosis, and oxidative stress by modulating PI3K/Akt/mTOR pathway in mice. Inflammation 46(4):1531–1542. https://doi.org/10.1007/s10753-023-01825-2

    Article  CAS  PubMed  Google Scholar 

  29. Zhao H, Wu L, Yan G et al (2021) Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduct Target Ther 6(1):263. https://doi.org/10.1038/s41392-021-00658-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu ZL, Chen HH, Zheng LL, Sun LP, Shi L (2023) Angiogenic signaling pathways and anti-angiogenic therapy for cancer. Signal Transduct Target Ther 8(1):198. https://doi.org/10.1038/s41392-023-01460-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhu X, Wang Y, Soaita I et al (2023) Acetate controls endothelial-to-mesenchymal transition. Cell Metab 35(7):1163-1178.e10. https://doi.org/10.1016/j.cmet.2023.05.010

    Article  CAS  PubMed  Google Scholar 

  32. Russo E, Grondona C, Brullo C, Spallarossa A, Villa C, Tasso B (2023) Indole antitumor agents in nanotechnology formulations: an overview. Pharmaceutics 15(7):1815. https://doi.org/10.3390/pharmaceutics15071815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dhiman A, Sharma R, Singh RK (2022) Target-based anticancer indole derivatives and insight into structure-activity relationship: a mechanistic review update (2018–2021). Acta Pharm Sin B 12(7):3006–3027. https://doi.org/10.1016/j.apsb.2022.03.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu J, Li W, Sun S et al (2024) Comparison of cardiotoxicity induced by alectinib, apatinib, lenvatinib and anlotinib in zebrafish embryos. Comp Biochem Physiol C Toxicol Pharmacol 278:109834. https://doi.org/10.1016/j.cbpc.2024.109834

    Article  CAS  PubMed  Google Scholar 

  35. Zhou L, Wang S, Chen M et al (2021) Simultaneous and rapid determination of 12 tyrosine kinase inhibitors by LC-MS/MS in human plasma: Application to therapeutic drug monitoring in patients with non-small cell lung cancer. J Chromatogr B Analyt Technol Biomed Life Sci 1175:122752. https://doi.org/10.1016/j.jchromb.2021.122752

    Article  CAS  PubMed  Google Scholar 

  36. Wei H, Wang F, Wang Y et al (2017) Verteporfin suppresses cell survival, angiogenesis and vasculogenic mimicry of pancreatic ductal adenocarcinoma via disrupting the YAP-TEAD complex. Cancer Sci 108(3):478–487. https://doi.org/10.1111/cas.13138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nisar MA, Zheng Q, Saleem MZ et al (2021) IL-1β promotes vasculogenic mimicry of breast cancer cells through p38/MAPK and PI3K/Akt signaling pathways. Front Oncol 11:618839. https://doi.org/10.3389/fonc.2021.618839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Qu F, Geng R, Liu Y, Zhu J (2022) Advanced nanocarrier- and microneedle-based transdermal drug delivery strategies for skin diseases treatment. Theranostics 12(7):3372–3406. https://doi.org/10.7150/thno.69999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dercle L, Zhao B, Gönen M et al (2022) Early readout on overall survival of patients with melanoma treated with immunotherapy using a novel imaging analysis. JAMA Oncol 8(3):385–392. https://doi.org/10.1001/jamaoncol.2021.6818

    Article  PubMed  PubMed Central  Google Scholar 

  40. Avry F, Mousset C, Oujagir E et al (2022) Microbubble-assisted ultrasound for imaging and therapy of melanoma skin cancer: a systematic review. Ultrasound Med Biol 48(11):2174–2198. https://doi.org/10.1016/j.ultrasmedbio.2022.06.021

    Article  PubMed  Google Scholar 

  41. Dzwierzynski WW (2021) Melanoma risk factors and prevention. Clin Plast Surg 48(4):543–550. https://doi.org/10.1016/j.cps.2021.05.001

    Article  PubMed  Google Scholar 

  42. Li C, Kuai L, Cui R, Miao X (2022) Melanogenesis and the targeted therapy of melanoma. Biomolecules 12(12):1874. https://doi.org/10.3390/biom12121874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Carvajal RD, Sacco JJ, Jager MJ et al (2023) Advances in the clinical management of uveal melanoma. Nat Rev Clin Oncol 20(2):99–115. https://doi.org/10.1038/s41571-022-00714-1

    Article  PubMed  Google Scholar 

  44. Furugaki K, Fujimura T, Mizuta H et al (2023) FGFR blockade inhibits targeted therapy-tolerant persister in basal FGFR1- and FGF2-high cancers with driver oncogenes. NPJ Precis Oncol 7(1):107. https://doi.org/10.1038/s41698-023-00462-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bellouard M, Donadieu J, Thiebot P et al (2023) Validation of liquid chromatography coupled with tandem mass spectrometry for the determination of 12 tyrosine kinase inhibitors (TKIs) and their application to therapeutic drug monitoring in adult and pediatric populations. Pharmaceutics 16(1):5. https://doi.org/10.3390/pharmaceutics16010005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. ** W, Hong S, Xun Y, Li C (2022) Comprehensive bioinformatics analysis of toll-like receptors (TLRs) in pan-cancer. Biomed Res Int 2022:4436646. https://doi.org/10.1155/2022/4436646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. **e C, Zhou X, Liang C et al (2021) Apatinib triggers autophagic and apoptotic cell death via VEGFR2/STAT3/PD-L1 and ROS/Nrf2/p62 signaling in lung cancer [published correction appears in J Exp Clin Cancer Res. 2021 Nov 6;40(1):349]. J Exp Clin Cancer Res 40(1):266. https://doi.org/10.1186/s13046-021-02069-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang Z, Chen W, Zuo L et al (2022) The Fibrillin-1/VEGFR2/STAT2 signaling axis promotes chemoresistance via modulating glycolysis and angiogenesis in ovarian cancer organoids and cells. Cancer Commun (Lond) 42(3):245–265. https://doi.org/10.1002/cac2.12274

    Article  CAS  PubMed  Google Scholar 

  49. Wang T, Tang J, Yang H et al (2022) Effect of apatinib plus pegylated liposomal doxorubicin vs pegylated liposomal doxorubicin alone on platinum-resistant recurrent ovarian cancer: the APPROVE randomized clinical trial. JAMA Oncol 8(8):1169–1176. https://doi.org/10.1001/jamaoncol.2022.2253

    Article  PubMed  PubMed Central  Google Scholar 

  50. Qiang H, Chang Q, Xu J et al (2020) New advances in antiangiogenic combination therapeutic strategies for advanced non-small cell lung cancer. J Cancer Res Clin Oncol 146(3):631–645. https://doi.org/10.1007/s00432-020-03129-6

    Article  PubMed  Google Scholar 

  51. Song KW, Edgar KA, Hanan EJ et al (2022) RTK-dependent inducible degradation of mutant PI3Kα drives GDC-0077 (inavolisib) efficacy. Cancer Discov 12(1):204–219. https://doi.org/10.1158/2159-8290.CD-21-0072

    Article  CAS  PubMed  Google Scholar 

  52. Liu Y, Gong S, Li K et al (2022) Coptisine protects against hyperuricemic nephropathy through alleviating inflammation, oxidative stress and mitochondrial apoptosis via PI3K/Akt signaling pathway. Biomed Pharmacother 156:113941. https://doi.org/10.1016/j.biopha.2022.113941

    Article  CAS  PubMed  Google Scholar 

  53. Sweeney C, Bracarda S, Sternberg CN et al (2021) Ipatasertib plus abiraterone and prednisolone in metastatic castration-resistant prostate cancer (IPATential150): a multicentre, randomised, double-blind, phase 3 trial. Lancet 398(10295):131–142. https://doi.org/10.1016/S0140-6736(21)00580-8

    Article  CAS  PubMed  Google Scholar 

  54. Sampson J, Richards MW, Choi J, Fry AM, Bayliss R (2021) Phase-separated foci of EML4-ALK facilitate signalling and depend upon an active kinase conformation. EMBO Rep 22(12):e53693. https://doi.org/10.15252/embr.202153693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang N, Chen S, Liu D et al (2020) Therapeutic effect of small molecule targeting drug apatinib on gastric cancer and its role in prognosis and anti-infection mechanism. Saudi J Biol Sci 27(2):606–610. https://doi.org/10.1016/j.sjbs.2019.11.036

    Article  CAS  PubMed  Google Scholar 

  56. Jia W, Liu Z, Zhan L, Zhao Q, Qiu W, Kuang J (2022) Editorial: Apatinib and anlotinib in the treatment of radioactive iodine refractory and highly invasive thyroid carcinoma. J Clin Med 11(21):6380. https://doi.org/10.3390/jcm11216380

    Article  PubMed  PubMed Central  Google Scholar 

  57. Dai S, Zhong Y, Cui H, Zhao J, Li S (2023) Aortic dissection induced by vascular endothelial growth factor inhibitors. Front Pharmacol 14:1189910. https://doi.org/10.3389/fphar.2023.1189910

    Article  PubMed  PubMed Central  Google Scholar 

  58. Chen C, Shi Q, Xu J, Ren T, Huang Y, Guo W (2022) Current progress and open challenges for applying tyrosine kinase inhibitors in osteosarcoma. Cell Death Discov 8(1):488. https://doi.org/10.1038/s41420-022-01252-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. **a X, Pi W, Lan Y et al (2022) Synergistic antitumor effects of anlotinib combined with oral 5-fluorouracil/s-1 via inhibiting Src/AKT signaling pathway in small-cell lung cancer. Anal Cell Pathol (Amst) 2022:4484211. https://doi.org/10.1155/2022/4484211

    Article  CAS  PubMed  Google Scholar 

  60. Cao Y, Shan H, Liu M et al (2021) Directly targeting c-Myc contributes to the anti-multiple myeloma effect of anlotinib. Cell Death Dis 12(4):396. https://doi.org/10.1038/s41419-021-03685-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang G, Cao L, Jiang Y et al (2022) Anlotinib reverses multidrug resistance (MDR) in osteosarcoma by inhibiting p-glycoprotein (PGP1) function in vitro and in vivo. Front Pharmacol 12:798837. https://doi.org/10.3389/fphar.2021.798837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Qian Y, Lou K, Zhou H, Zhang L, Yuan Y (2022) Efficacy and safety of anlotinib-based treatment in metastatic breast cancer patients. Front Oncol 12:1042451. https://doi.org/10.3389/fonc.2022.1042451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Li S, Zhou H, Zhang X et al (2023) The efficacy and safety of anlotinib alone and in combination with other drugs in previously treated advanced thymic epithelia tumors: a retrospective analysis. Recent Pat Anticancer Drug Discov 18(4):528–537. https://doi.org/10.2174/1574892818666221122114753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. **e L, Sun X, Xu J et al (2024) The efficacy and safety of vincristine, irinotecan and anlotinib in Epithelioid Sarcoma. BMC Cancer 24(1):172. https://doi.org/10.1186/s12885-024-11921-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank people who provided technical assistance and financial support in the Oncology Department, First Affiliated Hospital of Southwest Medical University. We also thankfully acknowledge all authors for their continuous collaborations with us in sharing information and contributions.

Author information

Authors and Affiliations

Authors

Contributions

QY, QL, and Hua Fan conceived and designed the study. QY and QL conducted the experiments, analyzed the data, and QY wrote the manuscript. All authors critically reviewed and approved the final version of the manuscript.

Corresponding author

Correspondence to Qian Yang.

Ethics declarations

Conflict of interest

No conflicts of interest were reported in relation to the funding or the research presented in this study. The authors have no financial or personal relationships that could potentially bias or influence the outcomes reported in this manuscript.

Statement of ethics

Approval for this study was obtained from the Animal Protection and Application Committee of Southwest Medical University (Luzhou, Sichuan, China) (no. 20210826-1).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Q., Li, Q. & Fan, H. Antitumor activity of anlotinib in malignant melanoma: modulation of angiogenesis and vasculogenic mimicry. Arch Dermatol Res 316, 447 (2024). https://doi.org/10.1007/s00403-024-03020-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00403-024-03020-1

Keywords

Navigation