Log in

Upstream open reading frame with NOTCH2NLC GGC expansion generates polyglycine aggregates and disrupts nucleocytoplasmic transport: implications for polyglycine diseases

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Neuronal intranuclear inclusion disease (NIID) is neurodegenerative disease characterized by widespread inclusions. Despite the identification of GGC repeat expansion in 5’UTR of NOTCH2NLC gene in adult-onset NIIDs, its pathogenic mechanism remains unclear. Gain-of-function poly-amino-acid proteins generated by unconventional translation have been revealed in nucleotide repeat expansion disorders, inspiring us to explore the possibility of unconventional translation in NIID. Here we demonstrated that NOTCH2NLC 5’UTR triggers the translation of a polyglycine (polyG)-containing protein, N2NLCpolyG. N2NLCpolyG accumulates in p62-positive inclusions in cultured cells, mouse models, and NIID patient tissues with NOTCH2NLC GGC expansion. Translation of N2NLCpolyG is initiated by an upstream open reading frame (uORF) embedding the GGC repeats. N2NLCpolyG tends to aggregate with the increase of GGC repeat units, and displays phase separation properties. N2NLCpolyG aggregation impairs nuclear lamina and nucleocytoplasmic transport but does not necessarily cause acute death on neuronal cells. Our study suggests a similarity of pathogenic mechanisms between NIID and another GGC-repeat disease, fragile X-associated tremor ataxia syndrome. These findings expand our knowledge of protein gain-of-function in NIID, and further highlight evidence for a novel spectrum of diseases caused by aberrant polyG protein aggregation, namely the polyG diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

5’UTR:

5’-Untranslated regions

ADLD:

Adult-onset autosomal-dominant leukodystrophy

CDS:

Coding sequence

FXTAS:

Fragile X-associated tremor/ataxia syndrome

GFP:

Green fluorescence protein

IUE:

In-utero electroporation

NIID:

Neuronal intranuclear inclusion disease

LLPS:

Liquid-to-liquid phase separation

NREDs:

Nucleotide repeat expansion disorders

polyA RNA:

Polyadenylated RNA

polyG:

Polyglycine

RAN:

Repeat-associated non-AUG

ribo-seq:

Ribosome profiling

uORF:

Upstream open reading frame

References

  1. Ambadipudi S, Biernat J, Riedel D, Mandelkow E, Zweckstetter M (2017) Liquid-liquid phase separation of the microtubule-binding repeats of the Alzheimer-related protein Tau. Nat Commun 8:275. https://doi.org/10.1038/s41467-017-00480-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Asamitsu S, Yabuki Y, Ikenoshita S, Kawakubo K, Kawasaki M, Usuki S et al (2021) CGG repeat RNA G-quadruplexes interact with FMRpolyG to cause neuronal dysfunction in fragile X-related tremor/ataxia syndrome. Sci Adv. https://doi.org/10.1126/sciadv.abd9440

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ash PE, Bieniek KF, Gendron TF, Caulfield T, Lin WL, Dejesus-Hernandez M et al (2013) Unconventional translation of C9ORF72 GGGGCC expansion generates insoluble polypeptides specific to c9FTD/ALS. Neuron 77:639–646. https://doi.org/10.1016/j.neuron.2013.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Boivin M, Deng J, Pfister V, Grandgirard E, Oulad-Abdelghani M, Morlet B et al (2021) Translation of GGC repeat expansions into a toxic polyglycine protein in NIID defines a novel class of human genetic disorders: the polyG diseases. Neuron 109:1825-1835.e1825. https://doi.org/10.1016/j.neuron.2021.03.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Boivin M, Pfister V, Gaucherot A, Ruffenach F, Negroni L, Sellier C et al (2020) Reduced autophagy upon C9ORF72 loss synergizes with dipeptide repeat protein toxicity in G4C2 repeat expansion disorders. EMBO J 39:e100574. https://doi.org/10.15252/embj.2018100574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen Z, Yan Yau W, Jaunmuktane Z, Tucci A, Sivakumar P, Gagliano Taliun SA et al (2020) Neuronal intranuclear inclusion disease is genetically heterogeneous. Ann Clin Transl Neurol 7:1716–1725. https://doi.org/10.1002/acn3.51151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chou CC, Zhang Y, Umoh ME, Vaughan SW, Lorenzini I, Liu F et al (2018) TDP-43 pathology disrupts nuclear pore complexes and nucleocytoplasmic transport in ALS/FTD. Nat Neurosci 21:228–239. https://doi.org/10.1038/s41593-017-0047-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. D’Angelo MA, Raices M, Panowski SH, Hetzer MW (2009) Age-dependent deterioration of nuclear pore complexes causes a loss of nuclear integrity in postmitotic cells. Cell 136:284–295. https://doi.org/10.1016/j.cell.2008.11.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Deng J, Gu M, Miao Y, Yao S, Zhu M, Fang P et al (2019) Long-read sequencing identified repeat expansions in the 5’UTR of the NOTCH2NLC gene from Chinese patients with neuronal intranuclear inclusion disease. J Med Genet 56:758–764. https://doi.org/10.1136/jmedgenet-2019-106268

    Article  CAS  PubMed  Google Scholar 

  10. Deng J, Yu J, Li P, Luan X, Cao L, Zhao J et al (2020) Expansion of GGC repeat in GIPC1 Is associated with oculopharyngodistal myopathy. Am J Hum Genet 106:793–804. https://doi.org/10.1016/j.ajhg.2020.04.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fiddes IT, Lodewijk GA, Mooring M, Bosworth CM, Ewing AD, Mantalas GL et al (2018) Human-specific NOTCH2NL genes affect notch signaling and cortical neurogenesis. Cell 173:1356-1369.e1322. https://doi.org/10.1016/j.cell.2018.03.051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Finnsson J, Sundblom J, Dahl N, Melberg A, Raininko R (2015) LMNB1-related autosomal-dominant leukodystrophy: clinical and radiological course. Ann Neurol 78:412–425. https://doi.org/10.1002/ana.24452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Freibaum BD, Lu Y, Lopez-Gonzalez R, Kim NC, Almeida S, Lee KH et al (2015) GGGGCC repeat expansion in C9orf72 compromises nucleocytoplasmic transport. Nature 525:129–133. https://doi.org/10.1038/nature14974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fukai Y, Yorimitsu D, Nishimura H, Kutoku Y, Sasaki T, Kashihara N et al (2018) Proteinuria in neuronal intranuclear inclusion disease. Neurol Clin Neurosci. https://doi.org/10.1111/ncn3.12182

    Article  Google Scholar 

  15. Gao FB, Richter JD, Cleveland DW (2017) Rethinking unconventional translation in neurodegeneration. Cell 171:994–1000. https://doi.org/10.1016/j.cell.2017.10.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gelpi E, Botta-Orfila T, Bodi L, Marti S, Kovacs G, Grau-Rivera O et al (2017) Neuronal intranuclear (hyaline) inclusion disease and fragile X-associated tremor/ataxia syndrome: a morphological and molecular dilemma. Brain: J Neurol 140:e51. https://doi.org/10.1093/brain/awx156

    Article  Google Scholar 

  17. Green KM, Glineburg MR, Kearse MG, Flores BN, Linsalata AE, Fedak SJ et al (2017) RAN translation at C9orf72-associated repeat expansions is selectively enhanced by the integrated stress response. Nat Commun 8:2005. https://doi.org/10.1038/s41467-017-02200-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hagerman RJ, Leehey M, Heinrichs W, Tassone F, Wilson R, Hills J (2001) Intention tremor, parkinsonism, and generalized brain atrophy in male carriers of fragile X. Neurology 57:127–130. https://doi.org/10.1212/wnl.57.1.127

    Article  CAS  PubMed  Google Scholar 

  19. Hinnebusch AG, Ivanov IP, Sonenberg N (2016) Translational control by 5’-untranslated regions of eukaryotic mRNAs. Science (New York, NY) 352:1413–1416. https://doi.org/10.1126/science.aad9868

    Article  CAS  Google Scholar 

  20. Huang S, Zhu S, Li XJ, Li S (2019) The expanding clinical universe of polyglutamine disease. Neurosci: Rev J Bringing Neurobiolneurol Psychiatry 25:512–520. https://doi.org/10.1177/1073858418822993

    Article  CAS  Google Scholar 

  21. Hukema RK, Buijsen RA, Raske C, Severijnen LA, Nieuwenhuizen-Bakker I, Minneboo M et al (2014) Induced expression of expanded CGG RNA causes mitochondrial dysfunction in vivo. Cell Cycle (Georgetown, Tex) 13:2600–2608. https://doi.org/10.4161/15384101.2014.943112

    Article  CAS  Google Scholar 

  22. Ingolia NT, Brar GA, Rouskin S, McGeachy AM, Weissman JS (2012) The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments. Nat Protoc 7:1534–1550. https://doi.org/10.1038/nprot.2012.086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ishiura H, Shibata S, Yoshimura J, Suzuki Y, Qu W, Doi K et al (2019) Noncoding CGG repeat expansions in neuronal intranuclear inclusion disease, oculopharyngodistal myopathy and an overlap** disease. Nat Genet 51:1222–1232. https://doi.org/10.1038/s41588-019-0458-z

    Article  CAS  PubMed  Google Scholar 

  24. ** P, Duan R, Qurashi A, Qin Y, Tian D, Rosser TC et al (2007) Pur alpha binds to rCGG repeats and modulates repeat-mediated neurodegeneration in a Drosophila model of fragile X tremor/ataxia syndrome. Neuron 55:556–564. https://doi.org/10.1016/j.neuron.2007.07.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. ** P, Zarnescu DC, Zhang F, Pearson CE, Lucchesi JC, Moses K et al (2003) RNA-mediated neurodegeneration caused by the fragile X premutation rCGG repeats in Drosophila. Neuron 39:739–747. https://doi.org/10.1016/s0896-6273(03)00533-6

    Article  CAS  PubMed  Google Scholar 

  26. Jovičić A, Mertens J, Boeynaems S, Bogaert E, Chai N, Yamada SB et al (2015) Modifiers of C9orf72 dipeptide repeat toxicity connect nucleocytoplasmic transport defects to FTD/ALS. Nat Neurosci 18:1226–1229. https://doi.org/10.1038/nn.4085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kearse MG, Green KM, Krans A, Rodriguez CM, Linsalata AE, Goldstrohm AC et al (2016) CGG repeat-associated non-AUG translation utilizes a cap-dependent scanning mechanism of initiation to produce toxic proteins. Mol Cell 62:314–322. https://doi.org/10.1016/j.molcel.2016.02.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Krishnan G, Zhang Y, Gu Y, Kankel MW, Gao FB, Almeida S (2020) CRISPR deletion of the C9ORF72 promoter in ALS/FTD patient motor neurons abolishes production of dipeptide repeat proteins and rescues neurodegeneration. Acta Neuropathol 140:81–84. https://doi.org/10.1007/s00401-020-02154-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li N, Lagier-Tourenne C (2018) Nuclear pores: the gate to neurodegeneration. Nat Neurosci 21:156–158. https://doi.org/10.1038/s41593-017-0066-0

    Article  CAS  PubMed  Google Scholar 

  30. Lin ST, Fu YH (2009) miR-23 regulation of lamin B1 is crucial for oligodendrocyte development and myelination. Dis Model Mech 2:178–188. https://doi.org/10.1242/dmm.001065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lu X, Hong D (2021) Neuronal intranuclear inclusion disease: recognition and update. J Neural Transm (Vienna, Austria 1996) 128:295–303. https://doi.org/10.1007/s00702-021-02313-3

    Article  Google Scholar 

  32. Mann JR, Gleixner AM, Mauna JC, Gomes E, DeChellis-Marks MR, Needham PG et al (2019) RNA binding antagonizes neurotoxic phase transitions of TDP-43. Neuron 102:321-338.e328. https://doi.org/10.1016/j.neuron.2019.01.048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Michel AM, Fox G, A MK, De Bo C, O’Connor PB, Heaphy SM et al (2014) GWIPS-viz: development of a ribo-seq genome browser. Nucleic Acids Res 42:D859-864. https://doi.org/10.1093/nar/gkt1035

    Article  CAS  PubMed  Google Scholar 

  34. Michel AM, Kiniry SJ, O’Connor PBF, Mullan JP, Baranov PV (2018) GWIPS-viz: 2018 update. Nucleic Acids Res 46:D823-d830. https://doi.org/10.1093/nar/gkx790

    Article  CAS  PubMed  Google Scholar 

  35. Minakawa EN, Popiel HA, Tada M, Takahashi T, Yamane H, Saitoh Y et al (2020) Arginine is a disease modifier for polyQ disease models that stabilizes polyQ protein conformation. Brain: J Neurol 143:1811–1825. https://doi.org/10.1093/brain/awaa115

    Article  Google Scholar 

  36. Motoki M, Nakajima H, Sato T, Tada M, Kakita A, Arawaka S (2018) Neuronal intranuclear inclusion disease showing intranuclear inclusions in renal biopsy 12 years earlier. Neurology 91:884–886. https://doi.org/10.1212/wnl.0000000000006480

    Article  PubMed  Google Scholar 

  37. Ogasawara M, Iida A, Kumutpongpanich T, Ozaki A, Oya Y, Konishi H et al (2020) CGG expansion in NOTCH2NLC is associated with oculopharyngodistal myopathy with neurological manifestations. Acta Neuropathol Commun 8:204. https://doi.org/10.1186/s40478-020-01084-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Patel A, Lee HO, Jawerth L, Maharana S, Jahnel M, Hein MY et al (2015) A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell 162:1066–1077. https://doi.org/10.1016/j.cell.2015.07.047

    Article  CAS  PubMed  Google Scholar 

  39. Rodriguez CM, Todd PK (2019) New pathologic mechanisms in nucleotide repeat expansion disorders. Neurobiol Dis 130:104515. https://doi.org/10.1016/j.nbd.2019.104515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Saito T (2006) In vivo electroporation in the embryonic mouse central nervous system. Nat Protoc 1:1552–1558. https://doi.org/10.1038/nprot.2006.276

    Article  CAS  PubMed  Google Scholar 

  41. Sellier C, Buijsen RAM, He F, Natla S, Jung L, Tropel P et al (2017) Translation of expanded CGG repeats into FMRpolyG Is pathogenic and may contribute to fragile X tremor ataxia syndrome. Neuron 93:331–347. https://doi.org/10.1016/j.neuron.2016.12.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sellier C, Freyermuth F, Tabet R, Tran T, He F, Ruffenach F et al (2013) Sequestration of DROSHA and DGCR8 by expanded CGG RNA repeats alters microRNA processing in fragile X-associated tremor/ataxia syndrome. Cell Rep 3:869–880. https://doi.org/10.1016/j.celrep.2013.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sone J, Mitsuhashi S, Fujita A, Mizuguchi T, Hamanaka K, Mori K et al (2019) Long-read sequencing identifies GGC repeat expansions in NOTCH2NLC associated with neuronal intranuclear inclusion disease. Nat Genet 51:1215–1221. https://doi.org/10.1038/s41588-019-0459-y

    Article  CAS  PubMed  Google Scholar 

  44. Sone J, Mori K, Inagaki T, Katsumata R, Takagi S, Yokoi S et al (2016) Clinicopathological features of adult-onset neuronal intranuclear inclusion disease. Brain: J Neurol 139:3170–3186. https://doi.org/10.1093/brain/aww249

    Article  Google Scholar 

  45. Sugiyama A, Sato N, Kimura Y, Maekawa T, Enokizono M, Saito Y (2017) MR imaging features of the cerebellum in adult-onset neuronal intranuclear inclusion disease: 8 cases. AJNR Am J Neuroradiol 38:2100–2104. https://doi.org/10.3174/ajnr.A5336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sun QY, Xu Q, Tian Y, Hu ZM, Qin LX, Yang JX et al (2020) Expansion of GGC repeat in the human-specific NOTCH2NLC gene is associated with essential tremor. Brain: J Neurol 143:222–233. https://doi.org/10.1093/brain/awz372

    Article  Google Scholar 

  47. Suzuki IK, Gacquer D, Van Heurck R, Kumar D, Wojno M, Bilheu A et al (2018) Human-specific NOTCH2NL genes expand cortical neurogenesis through delta/notch regulation. Cell 173:1370-1384.e1316. https://doi.org/10.1016/j.cell.2018.03.067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tabet R, Schaeffer L, Freyermuth F, Jambeau M, Workman M, Lee CZ et al (2018) CUG initiation and frameshifting enable production of dipeptide repeat proteins from ALS/FTD C9ORF72 transcripts. Nat Commun 9:152. https://doi.org/10.1038/s41467-017-02643-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tian Y, Wang JL, Huang W, Zeng S, Jiao B, Liu Z et al (2019) Expansion of human-specific GGC repeat in neuronal intranuclear inclusion disease-related disorders. Am J Hum Genet 105:166–176. https://doi.org/10.1016/j.ajhg.2019.05.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Todd PK, Oh SY, Krans A, He F, Sellier C, Frazer M et al (2013) CGG repeat-associated translation mediates neurodegeneration in fragile X tremor ataxia syndrome. Neuron 78:440–455. https://doi.org/10.1016/j.neuron.2013.03.026

    Article  CAS  PubMed  Google Scholar 

  51. Wei S, Du H, Li Z, Tao G, Xu Z, Song X et al (2019) Transcription factors Sp8 and Sp9 regulate the development of caudal ganglionic eminence-derived cortical interneurons. J Comp Neurol 527:2860–2874. https://doi.org/10.1002/cne.24712

    Article  CAS  PubMed  Google Scholar 

  52. Westenberger A, Klein C (2020) Essential phenotypes of NOTCH2NLC-related repeat expansion disorder. Brain: J Neurol 143:5–8. https://doi.org/10.1093/brain/awz404

    Article  Google Scholar 

  53. ** J, Wang X, Yue D, Dou T, Wu Q et al (2021) 5’ UTR CGG repeat expansion in GIPC1 is associated with oculopharyngodistal myopathy. Brain: J Neurol 144:601–614. https://doi.org/10.1093/brain/awaa426

    Article  Google Scholar 

  54. Yu J, Deng J, Guo X, Shan J, Luan X, Cao L et al (2021) The GGC repeat expansion in NOTCH2NLC is associated with oculopharyngodistal myopathy type 3. Brain: J Neurol. https://doi.org/10.1093/brain/awab077

    Article  PubMed  Google Scholar 

  55. Yu J, Deng J, Guo X, Shan J, Luan X, Cao L, Zhao J, Yu M, Zhang W, Lv H et al (2021) The GGC repeat expansion in NOTCH2NLC is associated with oculopharyngodistal myopathy type 3. Brain: J Neurol 144:1819–1832. https://doi.org/10.1093/brain/awab077

    Article  Google Scholar 

  56. Zhang YJ, Jansen-West K, Xu YF, Gendron TF, Bieniek KF, Lin WL, Sasaguri H, Caulfield T, Hubbard J, Daughrity L et al (2014) Aggregation-prone c9FTD/ALS poly(GA) RAN-translated proteins cause neurotoxicity by inducing ER stress. Acta Neuropathol 128:505–524. https://doi.org/10.1007/s00401-014-1336-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhong S, Zhao Z, **e W, Cai Y, Zhang Y, Ding J, Wang X (2021) GABAergic interneuron and neurotransmission are mTOR-dependently disturbed in experimental focal cortical dysplasia. Mol Neurobiol 58:156–169. https://doi.org/10.1007/s12035-020-02086-y

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by project grants from the National Natural Science Foundation of China (Code: 81771308, 31771184). We thank the patients and control subjects for participating in the study. We also thank the neurologists, pathologists and radiologists for their help in collecting clinical information, especially Dr. Yang Cai, Dr. ** Zhong, Yangye Lian, Wenyi Luo, **-Zhong-Aff1">

  • Corresponding authors

    Correspondence to **g Ding or **n Wang.

    Ethics declarations

    Conflict of interest

    The authors state that they have no conflicts of interest.

    Additional information

    Publisher's Note

    Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

    Supplementary Information

    Below is the link to the electronic supplementary material.

    Supplementary file1 (DOCX 48426 KB)

    Supplementary file2 (MP4 289 KB)

    Supplementary file3 (MP4 886 KB)

    Rights and permissions

    Reprints and permissions

    About this article

    Check for updates. Verify currency and authenticity via CrossMark

    Cite this article

    Zhong, S., Lian, Y., Luo, W. et al. Upstream open reading frame with NOTCH2NLC GGC expansion generates polyglycine aggregates and disrupts nucleocytoplasmic transport: implications for polyglycine diseases. Acta Neuropathol 142, 1003–1023 (2021). https://doi.org/10.1007/s00401-021-02375-3

    Download citation

    • Received:

    • Revised:

    • Accepted:

    • Published:

    • Issue Date:

    • DOI: https://doi.org/10.1007/s00401-021-02375-3

    Keywords

    Navigation