Log in

Enhancer reprogramming in PRC2-deficient malignant peripheral nerve sheath tumors induces a targetable de-differentiated state

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Malignant peripheral nerve sheath tumors (MPNSTs) are soft tissue sarcomas that frequently harbor genetic alterations in polycomb repressor complex 2 (PRC2) components—SUZ12 and EED. Here, we show that PRC2 loss confers a dedifferentiated early neural-crest phenotype which is exclusive to PRC2-mutant MPNSTs and not a feature of neurofibromas. Neural crest phenotype in PRC2 mutant MPNSTs was validated via cross-species comparative analysis using spontaneous and transgenic MPNST models. Systematic chromatin state profiling of the MPNST cells showed extensive epigenomic reprogramming or chromatin states associated with PRC2 loss and identified gains of active enhancer states/super-enhancers on early neural crest regulators in PRC2-mutant conditions around genomic loci that harbored repressed/poised states in PRC2-WT MPNST cells. Consistently, inverse correlation between H3K27me3 loss and H3K27Ac gain was noted in MPNSTs. Epigenetic editing experiments established functional roles for enhancer gains on DLX5—a key regulator of neural crest phenotype. Consistently, blockade of enhancer activity by bromodomain inhibitors specifically suppressed this neural crest phenotype and tumor burden in PRC2-mutant PDXs. Together, these findings reveal accumulation of dedifferentiated neural crest like state in PRC2-mutant MPNSTs that can be targeted by enhancer blockade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Andrews S (2010) FASTQC. A quality control tool for high throughput sequence data. City

  2. Ben-Porath I, Thomson MW, Carey VJ, Ge R, Bell GW, Regev A et al (2008) An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet 40:499–507. https://doi.org/10.1038/ng.127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Betancur P, Bronner-Fraser M, Sauka-Spengler T (2010) Assembling neural crest regulatory circuits into a gene regulatory network. Annu Rev Cell Dev Biol 26:581–603. https://doi.org/10.1146/annurev.cellbio.042308.113245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bhalla AD, Landers SM, Singh AK, Yeagley MG, Meyerson GSB, Mulder ZA et al (2021) New cellular models of undifferentiated pleomorphic sarcoma and malignant peripheral nerve sheath tumor. bioRxiv. https://doi.org/10.1101/2021.05.13.443902

    Article  PubMed  PubMed Central  Google Scholar 

  5. Brill E, Gobble R, Angeles C, Lagos-Quintana M, Crago A, Laxa B et al (2010) ZIC1 overexpression is oncogenic in liposarcoma. Cancer Res 70:6891–6901. https://doi.org/10.1158/0008-5472.CAN-10-0745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cao Q, Anyansi C, Hu X, Xu L, **ong L, Tang W et al (2017) Reconstruction of enhancer-target networks in 935 samples of human primary cells, tissues and cell lines. Nat Genet 49:1428–1436. https://doi.org/10.1038/ng.3950

    Article  CAS  PubMed  Google Scholar 

  7. Carbonnelle-Puscian A, Vidal V, Laurendeau I, Valeyrie-Allanore L, Vidaud D et al (2011) SOX9 expression increases with malignant potential in tumors from patients with neurofibromatosis 1 and is not correlated to desert hedgehog. Hum Pathol 42:434–443. https://doi.org/10.1016/j.humpath.2010.02.020

    Article  CAS  PubMed  Google Scholar 

  8. Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV et al (2013) Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinform 14:128. https://doi.org/10.1186/1471-2105-14-128

    Article  Google Scholar 

  9. Chen Z, Liu C, Patel AJ, Liao CP, Wang Y, Le LQ (2014) Cells of origin in the embryonic nerve roots for NF1-associated plexiform neurofibroma. Cancer Cell 26:695–706. https://doi.org/10.1016/j.ccell.2014.09.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cibulskis K, Lawrence MS, Carter SL, Sivachenko A, Jaffe D, Sougnez C et al (2013) Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat Biotechnol 31:213–219. https://doi.org/10.1038/nbt.2514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cleven AH, Al Sannaa GA, Briaire-de Bruijn I, Ingram DR, van de Rijn M, Rubin BP et al (2016) Loss of H3K27 tri-methylation is a diagnostic marker for malignant peripheral nerve sheath tumors and an indicator for an inferior survival. Mod Pathol 29:1113. https://doi.org/10.1038/modpathol.2016.103

    Article  PubMed  Google Scholar 

  12. Consortium EP (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74. https://doi.org/10.1038/nature11247

    Article  CAS  Google Scholar 

  13. Conway JR, Lex A, Gehlenborg N (2017) UpSetR: an R package for the visualization of intersecting sets and their properties. Bioinformatics 33:2938–2940. https://doi.org/10.1093/bioinformatics/btx364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. De Raedt T, Beert E, Pasmant E, Luscan A, Brems H, Ortonne N et al (2014) PRC2 loss amplifies Ras-driven transcription and confers sensitivity to BRD4-based therapies. Nature 514:247–251. https://doi.org/10.1038/nature13561

    Article  CAS  PubMed  Google Scholar 

  15. Delloye-Bourgeois C, Castellani V (2019) Hijacking of embryonic programs by neural crest-derived neuroblastoma: from physiological migration to metastatic dissemination. Front Mol Neurosci 12:52. https://doi.org/10.3389/fnmol.2019.00052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C et al (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21. https://doi.org/10.1093/bioinformatics/bts635

    Article  CAS  PubMed  Google Scholar 

  17. Ernst J, Kellis M (2012) ChromHMM: automating chromatin-state discovery and characterization. Nat Methods 9:215–216. https://doi.org/10.1038/nmeth.1906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Farid M, Demicco EG, Garcia R, Ahn L, Merola PR, Cioffi A et al (2014) Malignant peripheral nerve sheath tumors. Oncologist 19:193–201. https://doi.org/10.1634/theoncologist.2013-0328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Faust GG, Hall IM (2014) SAMBLASTER: fast duplicate marking and structural variant read extraction. Bioinformatics 30:2503–2505. https://doi.org/10.1093/bioinformatics/btu314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gallik KL, Treffy RW, Nacke LM, Ahsan K, Rocha M, Green-Saxena A et al (2017) Neural crest and cancer: divergent travelers on similar paths. Mech Dev 148:89–99. https://doi.org/10.1016/j.mod.2017.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Green SA, Simoes-Costa M, Bronner ME (2015) Evolution of vertebrates as viewed from the crest. Nature 520:474–482. https://doi.org/10.1038/nature14436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Grobmyer SR, Reith JD, Shahlaee A, Bush CH, Hochwald SN (2008) Malignant Peripheral Nerve Sheath Tumor: molecular pathogenesis and current management considerations. J Surg Oncol 97:340–349. https://doi.org/10.1002/jso.20971

    Article  CAS  PubMed  Google Scholar 

  23. Gu Z, Gu L, Eils R, Schlesner M, Brors B (2014) circlize Implements and enhances circular visualization in R. Bioinformatics 30:2811–2812. https://doi.org/10.1093/bioinformatics/btu393

    Article  CAS  PubMed  Google Scholar 

  24. Gupta G, Maniker A (2007) Malignant peripheral nerve sheath tumors. Neurosurg Focus 22:E12

    Article  PubMed  Google Scholar 

  25. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P et al (2010) Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell 38:576–589. https://doi.org/10.1016/j.molcel.2010.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hirbe AC, Dahiya S, Friedmann-Morvinski D, Verma IM, Clapp DW et al (2016) Spatially- and temporally-controlled postnatal p53 knockdown cooperates with embryonic Schwann cell precursor Nf1 gene loss to promote malignant peripheral nerve sheath tumor formation. Oncotarget 7:7403–7414. https://doi.org/10.18632/oncotarget.7232

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hnisz D, Abraham BJ, Lee TI, Lau A, Saint-Andre V, Sigova AA et al (2013) Super-enhancers in the control of cell identity and disease. Cell 155:934–947. https://doi.org/10.1016/j.cell.2013.09.053

    Article  CAS  PubMed  Google Scholar 

  28. Joseph NM, Mosher JT, Buchstaller J, Snider P, McKeever PE, Lim M et al (2008) The loss of Nf1 transiently promotes self-renewal but not tumorigenesis by neural crest stem cells. Cancer Cell 13:129–140. https://doi.org/10.1016/j.ccr.2008.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kadoch C, Crabtree GR (2013) Reversible disruption of mSWI/SNF (BAF) complexes by the SS18-SSX oncogenic fusion in synovial sarcoma. Cell 153:71–85. https://doi.org/10.1016/j.cell.2013.02.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kassambara A (2017) Ggpubr: publication ready plots

  31. Ki DH, He S, Rodig S, Look AT (2017) Overexpression of PDGFRA cooperates with loss of NF1 and p53 to accelerate the molecular pathogenesis of malignant peripheral nerve sheath tumors. Oncogene 36:1058–1068. https://doi.org/10.1038/onc.2016.269

    Article  CAS  PubMed  Google Scholar 

  32. Kolberg M, Holand M, Agesen TH, Brekke HR, Liestol K, Hall KS et al (2013) Survival meta-analyses for >1800 malignant peripheral nerve sheath tumor patients with and without neurofibromatosis type 1. Neuro Oncol 15:135–147. https://doi.org/10.1093/neuonc/nos287

    Article  CAS  PubMed  Google Scholar 

  33. Kolde R (2015) Pheatmap: pretty heatmaps

  34. Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z et al (2016) Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucl Acids Res 44:W90-97. https://doi.org/10.1093/nar/gkw377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25. https://doi.org/10.1186/gb-2009-10-3-r25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lawrence M, Gentleman R, Carey V (2009) rtracklayer: an R package for interfacing with genome browsers. Bioinformatics 25:1841–1842. https://doi.org/10.1093/bioinformatics/btp328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lawrence M, Huber W, Pages H, Aboyoun P, Carlson M, Gentleman R et al (2013) Software for computing and annotating genomic ranges. PLoS Comput Biol 9:e1003118. https://doi.org/10.1371/journal.pcbi.1003118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Le LQ, Liu C, Shipman T, Chen Z, Suter U, Parada LF (2011) Susceptible stages in Schwann cells for NF1-associated plexiform neurofibroma development. Cancer Res 71:4686–4695. https://doi.org/10.1158/0008-5472.CAN-10-4577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lee W, Teckie S, Wiesner T, Ran L, Prieto Granada CN, Lin M et al (2014) PRC2 is recurrently inactivated through EED or SUZ12 loss in malignant peripheral nerve sheath tumors. Nat Genet 46:1227–1232. https://doi.org/10.1038/ng.3095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lee BK, Jang YJ, Kim M, LeBlanc L, Rhee C, Lee J et al (2019) Super-enhancer-guided map** of regulatory networks controlling mouse trophoblast stem cells. Nat Commun 10:4749. https://doi.org/10.1038/s41467-019-12720-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079. https://doi.org/10.1093/bioinformatics/btp352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu W, Ma Q, Wong K, Li W, Ohgi K, Zhang J et al (2013) Brd4 and JMJD6-associated anti-pause enhancers in regulation of transcriptional pause release. Cell 155:1581–1595. https://doi.org/10.1016/j.cell.2013.10.056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lopez G, Torres K, Liu J, Hernandez B, Young E, Belousov R et al (2011) Autophagic survival in resistance to histone deacetylase inhibitors: novel strategies to treat malignant peripheral nerve sheath tumors. Cancer Res 71:185–196. https://doi.org/10.1158/0008-5472.CAN-10-2799

    Article  CAS  PubMed  Google Scholar 

  44. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550. https://doi.org/10.1186/s13059-014-0550-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Loven J, Hoke HA, Lin CY, Lau A, Orlando DA, Vakoc CR et al (2013) Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell 153:320–334. https://doi.org/10.1016/j.cell.2013.03.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lu C, Jain SU, Hoelper D, Bechet D, Molden RC, Ran L et al (2016) Histone H3K36 mutations promote sarcomagenesis through altered histone methylation landscape. Science 352:844–849. https://doi.org/10.1126/science.aac7272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Maguire LH, Thomas AR, Goldstein AM (2015) Tumors of the neural crest: common themes in development and cancer. Dev Dyn 244:311–322. https://doi.org/10.1002/dvdy.24226

    Article  PubMed  Google Scholar 

  48. McKinney W (2010) Data structures for statistical computing in Python. Proceedings of the 9th Python in science conference, City, pp 51–56

  49. Meissner A, Mikkelsen TS, Gu H, Wernig M, Hanna J, Sivachenko A et al (2008) Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454:766–770. https://doi.org/10.1038/nature07107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mi H, Thomas P (2009) PANTHER pathway: an ontology-based pathway database coupled with data analysis tools. Methods Mol Biol 563:123–140. https://doi.org/10.1007/978-1-60761-175-2_7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Miller SJ, Rangwala F, Williams J, Ackerman P, Kong S, Jegga AG et al (2006) Large-scale molecular comparison of human schwann cells to malignant peripheral nerve sheath tumor cell lines and tissues. Cancer Res 66:2584–2591. https://doi.org/10.1158/0008-5472.CAN-05-3330

    Article  CAS  PubMed  Google Scholar 

  52. Miller SJ, Jessen WJ, Mehta T, Hardiman A, Sites E, Kaiser S et al (2009) Integrative genomic analyses of neurofibromatosis tumours identify SOX9 as a biomarker and survival gene. EMBO Mol Med 1:236–248. https://doi.org/10.1002/emmm.200900027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mito JK, Qian X, Doyle LA, Hornick JL, Jo VY (2017) Role of Histone H3K27 trimethylation loss as a marker for malignant peripheral nerve sheath tumor in fine-needle aspiration and small biopsy specimens. Am J Clin Pathol 148:179–189. https://doi.org/10.1093/ajcp/aqx060

    Article  CAS  PubMed  Google Scholar 

  54. Mohammad F, Weissmann S, Leblanc B, Pandey DP, Hojfeldt JW, Comet I et al (2017) EZH2 is a potential therapeutic target for H3K27M-mutant pediatric gliomas. Nat Med 23:483–492. https://doi.org/10.1038/nm.4293

    Article  CAS  PubMed  Google Scholar 

  55. Moon CI, Tompkins W, Wang Y, Godec A, Zhang X, Pipkorn P et al (2020) Unmasking Intra-tumoral heterogeneity and clonal evolution in NF1-MPNST. Genes (Basel). https://doi.org/10.3390/genes11050499

    Article  PubMed Central  Google Scholar 

  56. Morini M, Astigiano S, Gitton Y, Emionite L, Mirisola V, Levi G et al (2010) Mutually exclusive expression of DLX2 and DLX5/6 is associated with the metastatic potential of the human breast cancer cell line MDA-MB-231. BMC Cancer 10:649. https://doi.org/10.1186/1471-2407-10-649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pasini D, Bracken AP, Hansen JB, Capillo M, Helin K (2007) The polycomb group protein Suz12 is required for embryonic stem cell differentiation. Mol Cell Biol 27:3769–3779. https://doi.org/10.1128/MCB.01432-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Patel AJ, Liao CP, Chen Z, Liu C, Wang Y, Le LQ (2014) BET bromodomain inhibition triggers apoptosis of NF1-associated malignant peripheral nerve sheath tumors through Bim induction. Cell Rep 6:81–92. https://doi.org/10.1016/j.celrep.2013.12.001

    Article  CAS  PubMed  Google Scholar 

  59. Prieto-Granada CN, Wiesner T, Messina JL, Jungbluth AA, Chi P, Antonescu CR (2016) Loss of H3K27me3 expression is a highly sensitive marker for sporadic and radiation-induced MPNST. Am J Surg Pathol 40:479–489. https://doi.org/10.1097/PAS.0000000000000564

    Article  PubMed  PubMed Central  Google Scholar 

  60. Ramirez F, Dundar F, Diehl S, Gruning BA, Manke T (2014) deepTools: a flexible platform for exploring deep-sequencing data. Nucl Acids Res 42:W187-191. https://doi.org/10.1093/nar/gku365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Roadmap Epigenomics C, Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A et al (2015) Integrative analysis of 111 reference human epigenomes. Nature 518:317–330. https://doi.org/10.1038/nature14248

    Article  CAS  Google Scholar 

  62. Rocha M, Singh N, Ahsan K, Beiriger A, Prince VE (2020) Neural crest development: insights from the zebrafish. Dev Dyn 249:88–111. https://doi.org/10.1002/dvdy.122

    Article  PubMed  Google Scholar 

  63. Ross-Innes CS, Stark R, Teschendorff AE, Holmes KA, Ali HR, Dunning MJ et al (2012) Differential oestrogen receptor binding is associated with clinical outcome in breast cancer. Nature 481:389–393. https://doi.org/10.1038/nature10730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sathirapongsasuti JF, Lee H, Horst BA, Brunner G, Cochran AJ, Binder S et al (2011) Exome sequencing-based copy-number variation and loss of heterozygosity detection: ExomeCNV. Bioinformatics 27:2648–2654. https://doi.org/10.1093/bioinformatics/btr462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Shen L, Shao N, Liu X, Nestler E (2014) ngs.plot: Quick mining and visualization of next-generation sequencing data by integrating genomic databases. BMC Genomics 15:284. https://doi.org/10.1186/1471-2164-15-284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Simoes-Costa M, Bronner ME (2015) Establishing neural crest identity: a gene regulatory recipe. Development 142:242–257. https://doi.org/10.1242/dev.105445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sinnberg T, Levesque MP, Krochmann J, Cheng PF, Ikenberg K, Meraz-Torres F et al (2018) Wnt-signaling enhances neural crest migration of melanoma cells and induces an invasive phenotype. Mol Cancer 17:59. https://doi.org/10.1186/s12943-018-0773-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Stuhlmiller TJ, Garcia-Castro MI (2012) Current perspectives of the signaling pathways directing neural crest induction. Cell Mol Life Sci 69:3715–3737. https://doi.org/10.1007/s00018-012-0991-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102:15545–15550. https://doi.org/10.1073/pnas.0506580102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Subramanian S, Thayanithy V, West RB, Lee CH, Beck AH, Zhu S et al (2010) Genome-wide transcriptome analyses reveal p53 inactivation mediated loss of miR-34a expression in malignant peripheral nerve sheath tumours. J Pathol 220:58–70. https://doi.org/10.1002/path.2633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sullivan LM, Folpe AL, Pawel BR, Judkins AR, Biegel JA (2013) Epithelioid sarcoma is associated with a high percentage of SMARCB1 deletions. Mod Pathol 26:385–392. https://doi.org/10.1038/modpathol.2012.175

    Article  CAS  PubMed  Google Scholar 

  72. Sun S, Yang F, Zhu Y, Zhang S (2020) KDM4A promotes the growth of non-small cell lung cancer by mediating the expression of Myc via DLX5 through the Wnt/beta-catenin signaling pathway. Life Sci 262:118508. https://doi.org/10.1016/j.lfs.2020.118508

    Article  CAS  PubMed  Google Scholar 

  73. Sun D, **e XP, Zhang X, Wang Z, Sait SF, Iyer SV et al (2021) Stem-like cells drive NF1-associated MPNST functional heterogeneity and tumor progression. Cell Stem Cell. https://doi.org/10.1016/j.stem.2021.04.029

    Article  PubMed  PubMed Central  Google Scholar 

  74. Takahashi K, Wang F, Kantarjian H, Song X, Patel K, Neelapu S et al (2017) Copy number alterations detected as clonal hematopoiesis of indeterminate potential. Blood Adv 1:1031–1036. https://doi.org/10.1182/bloodadvances.2017007922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Takahashi K, Hu B, Wang F, Yan Y, Kim E, Vitale C et al (2018) Clinical implications of cancer gene mutations in patients with chronic lymphocytic leukemia treated with lenalidomide. Blood 131:1820–1832. https://doi.org/10.1182/blood-2017-11-817296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Tan Y, Cheung M, Pei J, Menges CW, Godwin AK, Testa JR (2010) Upregulation of DLX5 promotes ovarian cancer cell proliferation by enhancing IRS-2-AKT signaling. Cancer Res 70:9197–9206. https://doi.org/10.1158/0008-5472.CAN-10-1568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Tavasoly A, Javanbakht J, Khaki F, Hosseini E, Bahrami A, Hassan MA et al (2013) Ulnar malignant peripheral nerve sheath tumour diagnosis in a mixed-breed dog as a model to study human: histologic, immunohistochemical, and clinicopathologic study. Diagn Pathol 8:86. https://doi.org/10.1186/1746-1596-8-86

    Article  PubMed  PubMed Central  Google Scholar 

  78. Terranova C, Tang M, Orouji E, Maitituoheti M, Raman A, Amin S et al (2018) An integrated platform for genome-wide map** of chromatin states using high-throughput ChIP-sequencing in tumor tissues. J Vis Exp. https://doi.org/10.3791/56972

    Article  PubMed  PubMed Central  Google Scholar 

  79. Versteege I, Sevenet N, Lange J, Rousseau-Merck MF, Ambros P, Handgretinger R et al (1998) Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature 394:203–206. https://doi.org/10.1038/28212

    Article  CAS  PubMed  Google Scholar 

  80. Watson KL, Al Sannaa GA, Kivlin CM, Ingram DR, Landers SM, Roland CL et al (2017) Patterns of recurrence and survival in sporadic, neurofibromatosis Type 1-associated, and radiation-associated malignant peripheral nerve sheath tumors. J Neurosurg 126:319–329. https://doi.org/10.3171/2015.12.JNS152443

    Article  PubMed  Google Scholar 

  81. Whyte WA, Orlando DA, Hnisz D, Abraham BJ, Lin CY, Kagey MH et al (2013) Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153:307–319. https://doi.org/10.1016/j.cell.2013.03.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer, New York

    Book  Google Scholar 

  83. Wickham HAM, Bryan J, Chang W, McGowan LD, François R, Grolemund G et al (2019) Welcome to the tidyverse. J Open Source Softw 4:1686

    Article  Google Scholar 

  84. Wojcik JB, Marchione DM, Sidoli S, Djedid A, Lisby A, Majewski J et al (2019) Epigenomic reordering induced by polycomb loss drives oncogenesis but leads to therapeutic vulnerabilities in malignant peripheral nerve sheath tumors. Cancer Res 79:3205–3219. https://doi.org/10.1158/0008-5472.CAN-18-3704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Woodhoo A, Sommer L (2008) Development of the Schwann cell lineage: from the neural crest to the myelinated nerve. Glia 56:1481–1490. https://doi.org/10.1002/glia.20723

    Article  PubMed  Google Scholar 

  86. Wu J, Saint-Jeannet JP, Klein PS (2003) Wnt-frizzled signaling in neural crest formation. Trends Neurosci 26:40–45. https://doi.org/10.1016/s0166-2236(02)00011-5

    Article  CAS  PubMed  Google Scholar 

  87. Wu J, Williams JP, Rizvi TA, Kordich JJ, Witte D, Meijer D et al (2008) Plexiform and dermal neurofibromas and pigmentation are caused by Nf1 loss in desert hedgehog-expressing cells. Cancer Cell 13:105–116. https://doi.org/10.1016/j.ccr.2007.12.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Xu T, Le TD, Liu L, Su N, Wang R, Sun B et al (2017) CancerSubtypes: an R/Bioconductor package for molecular cancer subtype identification, validation and visualization. Bioinformatics 33:3131–3133. https://doi.org/10.1093/bioinformatics/btx378

    Article  CAS  PubMed  Google Scholar 

  89. Ye K, Schulz MH, Long Q, Apweiler R, Ning Z (2009) Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads. Bioinformatics 25:2865–2871. https://doi.org/10.1093/bioinformatics/btp394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yeo NC, Chavez A, Lance-Byrne A, Chan Y, Menn D, Milanova D et al (2018) An enhanced CRISPR repressor for targeted mammalian gene regulation. Nat Methods 15:611–616. https://doi.org/10.1038/s41592-018-0048-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE et al (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol 9:R137. https://doi.org/10.1186/gb-2008-9-9-r137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zhang J, Fujimoto J, Zhang J, Wedge DC, Song X, Zhang J et al (2014a) Intratumor heterogeneity in localized lung adenocarcinomas delineated by multiregion sequencing. Science 346:256–259. https://doi.org/10.1126/science.1256930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zhang M, Wang Y, Jones S, Sausen M, McMahon K, Sharma R et al (2014b) Somatic mutations of SUZ12 in malignant peripheral nerve sheath tumors. Nat Genet 46:1170–1172. https://doi.org/10.1038/ng.3116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Amy Ninetto for critical input and editing of the manuscript. We thank Erika Thompson, the Advanced Technology Genomics Core Facility (NCI Grant CA016672(ATGC), the Research Animal Support Facility, the Advanced Microscopy Core Facility (funded by NIH S10 RR029552), Functional Genomics Core (NCI Cancer Center Support Grant (P30 CA016672), Cytogenetics and Cell Authentication core, MD Anderson Cancer Center Clinical Core and MD Anderson Cancer Center Science Park Research Histology, Pathology and Imaging Core (supported by P30 CA16672 DHHS/NCI Cancer Center Support Grant). This work was partially supported by Department of Defense CDRMP Grant (NF160026 to K.E.T and NF190074 to K.R.), to K.E.T., The Texas Neurofibromatosis Foundation, The Sally Kingsbury Sarcoma Research Foundation to K.E.T. and DoD New Investigator Award to Kunal Rai (NF190074). V.K and S.M.L were funded by The Jay Vernon Jackson Sarcoma Research Fund and Friends MDA Sarcoma Research. Support for the clinical sample collection was provided by the Ferrin R Zeitlin Foundation, Artz Cure Sarcoma Foundation (K.E.T.) and A Shelter for Cancer Families (formerly Amschwand Sarcoma Cancer Foundation) (K.E.T). Support for the proteomics analysis was from MoJo’s Miracle (K.E.T.). J.P.L. was funded by National Institutes of Health (T32 CA 009599) and the MD Anderson Cancer Center support grant (P30 CA016672).

Author information

Authors and Affiliations

Authors

Contributions

VK, KR, and KET designed experiments. VK, SML, and ADB performed experiments. ATR and VK performed the computational analysis and interpretation of the data. VK, ATR, and MT did ChIP-Seq analysis. VK and ATR wrote the manuscript. SML and JPL performed all animal work. ADB and HB analyzed the DNA sequencing data from the cell lines. JS, CT, CCW, and JZ assisted with the data analysis and integration. DI assisted with tissue collection and TMA. SG, RL, WW, and AJL assisted with the TMA analysis. SML generated some of the cell lines. YJ maintained the transgenic zebrafish and mice colonies. EZK, CS, CLR, KKH, BWF, IM, and JS provided patient samples and clinical data. BWJ, DW, and HWR provided canine PNST samples and vetted the diagnosis of the samples. IM, JS, PH, and AF provided clinical and scientific input to the direction of the project. KET and KR supervised the project.

Corresponding authors

Correspondence to Kunal Rai or Keila E. Torres.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kochat, V., Raman, A.T., Landers, S.M. et al. Enhancer reprogramming in PRC2-deficient malignant peripheral nerve sheath tumors induces a targetable de-differentiated state. Acta Neuropathol 142, 565–590 (2021). https://doi.org/10.1007/s00401-021-02341-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-021-02341-z

Keywords

Navigation