Log in

Abnormal tau phosphorylation in primary progressive multiple sclerosis

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Although neurodegeneration is the pathological substrate of progression in multiple sclerosis (MS), the underlying mechanisms remain unresolved. Abnormal phosphorylation of tau, implicated in the aetiopathogenesis of a number of classic neurodegenerative disorders, has also recently been described in secondary progressive MS (SPMS). In contrast to SPMS, primary progressive MS (PPMS) represents a significant subset of patients with accumulating neurological disability from onset. The neuropathological relationship between SPMS and PPMS is unknown. Against this background, we investigated tau phosphorylation status in five cases of PPMS using immunohistochemical and biochemical methods. We report widespread abnormal tau hyperphosphorylation of the classic tau phospho-epitopes occurring in multiple cell types but with a clear immunohistochemical glial bias. In addition, biochemical analysis revealed abnormally phosphorylated insoluble tau in all cases. These findings establish a platform for further study of the role of insoluble tau formation, including determining the relevance of glial tau pathology, in the neurodegenerative phase of MS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CNS:

Central nervous system

LFB:

Luxol fast blue

mAb:

Monoclonal antibody

NGS:

Normal goat serum

NAWM:

Normal appearing white matter

PB:

Phosphate buffer

PBS:

Phosphate buffered saline

Triton/PBS:

Triton/phosphate buffered saline

References

  1. Allen B, Ingram E, Takao M et al (2002) Abundant tau filaments and nonapoptotic neurodegeneration in transgenic mice expressing human P301S tau protein. J Neurosci 22:9340–9351

    CAS  PubMed  Google Scholar 

  2. Alonso AD, Grundke-Iqbal I, Barra HS, Iqbal K (1997) Abnormal phosphorylation of tau and the mechanism of Alzheimer neurofibrillary degeneration: sequestration of microtubule-associated proteins 1 and 2 and the disassembly of microtubules by the abnormal tau. Proc Natl Acad Sci USA 94:298–303

    Article  CAS  PubMed  Google Scholar 

  3. Alonso Adel C, Li B, Grundke-Iqbal I, Iqbal K (2006) Polymerization of hyperphosphorylated tau into filaments eliminates its inhibitory activity. Proc Natl Acad Sci USA 103:8864–8869

    Article  PubMed  CAS  Google Scholar 

  4. Anderson JM, Hampton DW, Patani R et al (2008) Abnormally phosphorylated tau is associated with neuronal and axonal loss in experimental autoimmune encephalomyelitis and multiple sclerosis. Brain 131:1736–1748

    Article  CAS  PubMed  Google Scholar 

  5. Anderson JM, Patani R, Reynolds R et al (2009) Evidence for abnormal tau phosphorylation in early aggressive multiple sclerosis. Acta Neuropathol 117:583–589

    Article  CAS  PubMed  Google Scholar 

  6. Araque A, Carmignoto G, Haydon PG (2001) Dynamic signaling between astrocytes and neurons. Annu Rev Physiol 63:795–813

    Article  CAS  PubMed  Google Scholar 

  7. Ayers MM, Hazelwood LJ, Catmull DV et al (2004) Early glial responses in murine models of multiple sclerosis. Neurochem Int 45:409–419

    Article  CAS  PubMed  Google Scholar 

  8. Ballatore C, Lee VM, Trojanowski JQ (2007) Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat Rev Neurosci 8:663–672

    Article  CAS  PubMed  Google Scholar 

  9. Bandyopadhyay B, Li G, Yin H, Kuret J (2007) Tau aggregation and toxicity in a cell culture model of tauopathy. J Biol Chem 282:16454–16464

    Article  CAS  PubMed  Google Scholar 

  10. Bjartmar C, Kinkel RP, Kidd G, Rudick RA, Trapp BD (2001) Axonal loss in normal-appearing white matter in a patient with acute MS. Neurology 57:1248–1252

    CAS  PubMed  Google Scholar 

  11. Compston A, Confavreux C, Lassmann H, McDonald IR, Miller D, Noseworthy J, Smith KJ, Wekerle H (2006) In: Compston A (ed) McAlpine’s multiple sclerosis. Churchill Livingstone, London

  12. Confavreux C, Vukusic S (2006) Age at disability milestones in multiple sclerosis. Brain 129:595–605

    Article  PubMed  Google Scholar 

  13. D’Amelio FE, Smith ME, Eng LF (1990) Sequence of tissue responses in the early stages of experimental allergic encephalomyelitis (EAE): immunohistochemical, light microscopic, and ultrastructural observations in the spinal cord. Glia 3:229–240

    Article  PubMed  Google Scholar 

  14. Dabir DV, Robinson MB, Swanson E et al (2006) Impaired glutamate transport in a mouse model of tau pathology in astrocytes. J Neurosci 26:644–654

    Article  CAS  PubMed  Google Scholar 

  15. Davie CA, Barker GJ, Webb S et al (1995) Persistent functional deficit in multiple sclerosis and autosomal dominant cerebellar ataxia is associated with axon loss. Brain 118(Pt 6):1583–1592

    Article  PubMed  Google Scholar 

  16. De Groot CJ, Ruuls SR, Theeuwes JW, Dijkstra CD, Van der Valk P (1997) Immunocytochemical characterization of the expression of inducible and constitutive isoforms of nitric oxide synthase in demyelinating multiple sclerosis lesions. J Neuropathol Exp Neurol 56:10–20

    Article  PubMed  Google Scholar 

  17. De Stefano N, Matthews PM, Fu L et al (1998) Axonal damage correlates with disability in patients with relapsing-remitting multiple sclerosis. Results of a longitudinal magnetic resonance spectroscopy study. Brain 121(Pt 8):1469–1477

    Article  PubMed  Google Scholar 

  18. DeLuca GC, Williams K, Evangelou N, Ebers GC, Esiri MM (2006) The contribution of demyelination to axonal loss in multiple sclerosis. Brain 129:1507–1516

    Article  CAS  PubMed  Google Scholar 

  19. Feany MB, Dickson DW (1995) Widespread cytoskeletal pathology characterizes corticobasal degeneration. Am J Pathol 146:1388–1396

    CAS  PubMed  Google Scholar 

  20. Ferguson B, Matyszak MK, Esiri MM, Perry VH (1997) Axonal damage in acute multiple sclerosis lesions. Brain 120(Pt 3):393–399

    Article  PubMed  Google Scholar 

  21. Forman MS, Zhukareva V, Bergeron C et al (2002) Signature tau neuropathology in gray and white matter of corticobasal degeneration. Am J Pathol 160:2045–2053

    CAS  PubMed  Google Scholar 

  22. Forman MS, Lal D, Zhang B et al (2005) Transgenic mouse model of tau pathology in astrocytes leading to nervous system degeneration. J Neurosci 25:3539–3550

    Article  CAS  PubMed  Google Scholar 

  23. Gasparini L, Terni B, Spillantini MG (2007) Frontotemporal dementia with tau pathology. Neurodegener Dis 4:236–253

    Article  PubMed  Google Scholar 

  24. Goedert M, Spillantini MG, Cairns NJ, Crowther RA (1992) Tau proteins of Alzheimer paired helical filaments: abnormal phosphorylation of all six brain isoforms. Neuron 8:159–168

    Article  CAS  PubMed  Google Scholar 

  25. Goedert M, Spillantini MG (2006) A century of Alzheimer’s disease. Science 314:777–781

    Article  CAS  PubMed  Google Scholar 

  26. Gustke N, Steiner B, Mandelkow EM et al (1992) The Alzheimer-like phosphorylation of tau protein reduces microtubule binding and involves Ser-Pro and Thr-Pro motifs. FEBS Lett 307:199–205

    Article  CAS  PubMed  Google Scholar 

  27. Higuchi M, Zhang B, Forman MS, Yoshiyama Y, Trojanowski JQ, Lee VM (2005) Axonal degeneration induced by targeted expression of mutant human tau in oligodendrocytes of transgenic mice that model glial tauopathies. J Neurosci 25:9434–9443

    Article  CAS  PubMed  Google Scholar 

  28. Ilieva H, Polymenidou M, Cleveland DW (2009) Non-cell autonomous toxicity in neurodegenerative disorders: ALS and beyond. J Cell Biol 187:761–772

    Article  CAS  PubMed  Google Scholar 

  29. Johnson GV, Stoothoff WH (2004) Tau phosphorylation in neuronal cell function and dysfunction. J Cell Sci 117:5721–5729

    Article  CAS  PubMed  Google Scholar 

  30. Komori T (1999) Tau-positive glial inclusions in progressive supranuclear palsy, corticobasal degeneration and Pick’s disease. Brain Pathol 9:663–679

    Article  CAS  PubMed  Google Scholar 

  31. Kremenchutzky M, Rice GP, Baskerville J, Wingerchuk DM, Ebers GC (2006) The natural history of multiple sclerosis: a geographically based study 9: observations on the progressive phase of the disease. Brain 129:584–594

    Article  CAS  PubMed  Google Scholar 

  32. Leary SM, Porter B, Thompson AJ (2005) Multiple sclerosis: diagnosis and the management of acute relapses. Postgrad Med J 81:302–308

    Article  CAS  PubMed  Google Scholar 

  33. Leary SM, Thompson AJ (2005) Primary progressive multiple sclerosis: current and future treatment options. CNS Drugs 19:369–376

    Article  CAS  PubMed  Google Scholar 

  34. Lee VM, Goedert M, Trojanowski JQ (2001) Neurodegenerative tauopathies. Annu Rev Neurosci 24:1121–1159

    Article  CAS  PubMed  Google Scholar 

  35. Lin X, Tench CR, Turner B, Blumhardt LD, Constantinescu CS (2003) Spinal cord atrophy and disability in multiple sclerosis over four years: application of a reproducible automated technique in monitoring disease progression in a cohort of the interferon beta-1a (Rebif) treatment trial. J Neurol Neurosurg Psychiatry 74:1090–1094

    Article  CAS  PubMed  Google Scholar 

  36. Lipton SA, Rosenberg PA (1994) Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med 330:613–622

    Article  CAS  PubMed  Google Scholar 

  37. Lobsiger CS, Cleveland DW (2007) Glial cells as intrinsic components of non-cell-autonomous neurodegenerative disease. Nat Neurosci 10:1355–1360

    Article  CAS  PubMed  Google Scholar 

  38. Losseff NA, Webb SL, O’Riordan JI et al (1996) Spinal cord atrophy and disability in multiple sclerosis. A new reproducible and sensitive MRI method with potential to monitor disease progression. Brain 119(Pt 3):701–708

    Article  PubMed  Google Scholar 

  39. Lovas G, Szilagyi N, Majtenyi K, Palkovits M, Komoly S (2000) Axonal changes in chronic demyelinated cervical spinal cord plaques. Brain 123(Pt 2):308–317

    Article  PubMed  Google Scholar 

  40. Magnani E, Fan J, Gasparini L et al (2007) Interaction of tau protein with the dynactin complex. EMBO J 26:4546–4554

    Article  CAS  PubMed  Google Scholar 

  41. Mandelkow EM, Stamer K, Vogel R, Thies E, Mandelkow E (2003) Clogging of axons by tau, inhibition of axonal traffic and starvation of synapses. Neurobiol Aging 24:1079–1085

    Article  CAS  PubMed  Google Scholar 

  42. Matthews PM, Pioro E, Narayanan S et al (1996) Assessment of lesion pathology in multiple sclerosis using quantitative MRI morphometry and magnetic resonance spectroscopy. Brain 119(Pt 3):715–722

    Article  PubMed  Google Scholar 

  43. Miller DH, Barkhof F, Frank JA, Parker GJ, Thompson AJ (2002) Measurement of atrophy in multiple sclerosis: pathological basis, methodological aspects and clinical relevance. Brain 125:1676–1695

    Article  PubMed  Google Scholar 

  44. Nair A, Frederick TJ, Miller SD (2008) Astrocytes in multiple sclerosis: a product of their environment. Cell Mol Life Sci 65:2702–2720

    Article  CAS  PubMed  Google Scholar 

  45. Nishimura M, Namba Y, Ikeda K, Oda M (1992) Glial fibrillary tangles with straight tubules in the brains of patients with progressive supranuclear palsy. Neurosci Lett 143:35–38

    Article  CAS  PubMed  Google Scholar 

  46. Peterson JW, Bo L, Mork S, Chang A, Trapp BD (2001) Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions. Ann Neurol 50:389–400

    Article  CAS  PubMed  Google Scholar 

  47. Pitt D, Werner P, Raine CS (2000) Glutamate excitotoxicity in a model of multiple sclerosis. Nat Med 6:67–70

    Article  CAS  PubMed  Google Scholar 

  48. Rudick RA, Fisher E, Lee JC, Simon J, Jacobs L (1999) Use of the brain parenchymal fraction to measure whole brain atrophy in relapsing-remitting MS. Multiple Sclerosis Collaborative Research Group. Neurology 53:1698–1704

    CAS  PubMed  Google Scholar 

  49. Santpere G, Ferrer I (2009) Delineation of early changes in cases with progressive supranuclear palsy-like pathology. Astrocytes in striatum are primary targets of tau phosphorylation and GFAP oxidation. Brain Pathol 19:177–187

    Article  CAS  PubMed  Google Scholar 

  50. Schofield E, Kersaitis C, Shepherd CE, Kril JJ, Halliday GM (2003) Severity of gliosis in Pick’s disease and frontotemporal lobar degeneration: tau-positive glia differentiate these disorders. Brain 126:827–840

    Article  PubMed  Google Scholar 

  51. Shriver LP, Dittel BN (2006) T-cell-mediated disruption of the neuronal microtubule network: correlation with early reversible axonal dysfunction in acute experimental autoimmune encephalomyelitis. Am J Pathol 169:999–1011

    Article  CAS  PubMed  Google Scholar 

  52. Smith KJ, Lassmann H (2002) The role of nitric oxide in multiple sclerosis. Lancet Neurol 1:232–241

    Article  CAS  PubMed  Google Scholar 

  53. Stokin GB, Lillo C, Falzone TL et al (2005) Axonopathy and transport deficits early in the pathogenesis of Alzheimer’s disease. Science 307:1282–1288

    Article  CAS  PubMed  Google Scholar 

  54. Takahashi JL, Giuliani F, Power C, Imai Y, Yong VW (2003) Interleukin-1beta promotes oligodendrocyte death through glutamate excitotoxicity. Ann Neurol 53:588–595

    Article  CAS  PubMed  Google Scholar 

  55. Togo T, Dickson DW (2002) Tau accumulation in astrocytes in progressive supranuclear palsy is a degenerative rather than a reactive process. Acta Neuropathol 104:398–402

    Article  CAS  PubMed  Google Scholar 

  56. Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mork S, Bo L (1998) Axonal transection in the lesions of multiple sclerosis. N Engl J Med 338:278–285

    Article  CAS  PubMed  Google Scholar 

  57. Trojano M, Liguori M, Bosco Zimatore G et al (2002) Age-related disability in multiple sclerosis. Ann Neurol 51:475–480

    Article  PubMed  Google Scholar 

  58. Uchihara T, Tsuchiya K, Nakamura A, Ikeda K (2000) Appearance of tau-2 immunoreactivity in glial cells in human brain with cerebral infarction. Neurosci Lett 286:99–102

    Article  CAS  PubMed  Google Scholar 

  59. Wang D, Ayers MM, Catmull DV, Hazelwood LJ, Bernard CC, Orian JM (2005) Astrocyte-associated axonal damage in pre-onset stages of experimental autoimmune encephalomyelitis. Glia 51:235–240

    Article  PubMed  Google Scholar 

  60. Wang DD, Bordey A (2008) The astrocyte odyssey. Prog Neurobiol 86:342–367

    CAS  PubMed  Google Scholar 

  61. Wegner C, Esiri MM, Chance SA, Palace J, Matthews PM (2006) Neocortical neuronal, synaptic, and glial loss in multiple sclerosis. Neurology 67:960–967

    Article  CAS  PubMed  Google Scholar 

  62. Werner P, Pitt D, Raine CS (2001) Multiple sclerosis: altered glutamate homeostasis in lesions correlates with oligodendrocyte and axonal damage. Ann Neurol 50:169–180

    Article  CAS  PubMed  Google Scholar 

  63. Williams A, Piaton G, Lubetzki C (2007) Astrocytes—friends or foes in multiple sclerosis? Glia 55:1300–1312

    Article  PubMed  Google Scholar 

  64. Zhukareva V, Mann D, Pickering-Brown S et al (2002) Sporadic Pick’s disease: a tauopathy characterized by a spectrum of pathological tau isoforms in gray and white matter. Ann Neurol 51:730–739

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

These studies were supported by the Webb Trust Fund, Husky Foundation, Sir David Walker Trust Fund, Medical Research Council, Wellcome Trust, National Institute for Health Research (NIHR), MS Society of Great Britain and Northern Ireland, and the National Multiple Sclerosis Society, USA. Tissue samples were supplied by the UK MS Tissue Bank, funded by the Multiple Sclerosis Society of Great Britain and Northern Ireland, registered charity 207495. The authors report no other disclosures.

Conflict of interest statement

We declare no known conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siddharthan Chandran.

Additional information

J. M. Anderson and R. Patani are co-first authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, J.M., Patani, R., Reynolds, R. et al. Abnormal tau phosphorylation in primary progressive multiple sclerosis. Acta Neuropathol 119, 591–600 (2010). https://doi.org/10.1007/s00401-010-0671-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-010-0671-4

Keywords

Navigation