Log in

A meshless numerical study of conjugate mixed convection of non-Newtonian nanofluids in an enclosure using non-homogeneous model

  • Research
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The present study deals with the conjugate mixed convection of a non-Newtonian nanofluid in an enclosure with a left thick side wall. We adopt Buongiorno’s non-homogeneous model to incorporate the effects due to Brownian motion and thermophoretic diffusion of the nanoparticles. The non-Newtonian behavior of the nanofluid is captured through the widely accepted power-law model. We employ the radial basis function (RBF)-based meshless numerical scheme for the simulation. In order to check the accuracy of the present numerical scheme, the simulated results are compared with the available numerical as well as experimental data. The excellent agreement of our results with the available ones ensures the capability of the newly adopted numerical tools to study the conjugate heat transfer problems. The results are presented by varying the pertaining parameters governing the undertaken conjugate mixed convection problem. Richardson number and Reynolds number are varied up to a moderate range with different permissible choices of the nanoparticle volume fractions, diameter of the nanoparticles, power-law index, and solid-to-fluid conductivity ratio, etc. The entropy generation and Bejan number are further evaluated to analyze the heat transfer characteristics. Results show that the degree of inhomogeneity of the nanoparticles depends strongly on the fluid behavior index. Rheological behavior of the nanofluid has substantial impact on the heat transfer rate and entropy generation, which can further be controlled through the value of the solid-to-fluid conductivity ratio. The pattern in Bejan number shows the predominance of the heat transfer irreversibility over the fluid friction irreversibility for all the cases considered in the study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data and materials

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

Abbreviations

Be :

Bejan number, \(S_{h}/S_{gen}\)

D :

Dimensionless thickness of the solid wall

\(D_{B}\) :

Brownian diffusion coefficient

\(D_{T}\) :

Thermophoretic diffusion coefficient

\(d_{p}\) :

Diameter of the nanoparticle (m)

g :

Gravitational acceleration (\(m/s^{2}\))

Gr :

Grashof number, \(\left( \beta _{f}\rho _{f}^{2}V_{0}^{2-2n} H^{2n+1} (T_{h}-T_{c}) g \right) /m^{2}\)

H :

Enclosure height (m)

k :

Thermal conductivity (W/mK)

\(k_{B}\) :

Boltzmann constant (\(J K^{-1}\))

\(K_{r}\) :

Solid wall to nanofluid thermal conductivity ratio, \(k_{s}/k_{nf}\)

\(K_{ro}\) :

Solid wall to base fluid thermal conductivity ratio, \(k_{s}/k_{f}\)

m :

Flow consistency index

n :

Fluid behavior index

Nu :

Local Nusselt number

\(p^{*}\) :

Pressure (\(N/m^{2}\))

Pr :

Prandtl number, \(m(C_{p})_{f} V_{0}^{n-1}H^{1-n}/k_{f}\)

Re :

Reynolds number, \(\left( \rho _{f}V_{0}^{2-n}H^{n}\right) / m\)

Ri :

Richardson number, \(Gr/Re^{2}\)

\(S_{f}\) :

Dimensionless local entropy generation due to fluid friction irreversibility

\(S_{gen}\) :

Dimensionless total entropy generation

\(S_{h}\) :

Dimensionless local entropy generation due to heat transfer irreversibility

t :

Dimensionless time

T :

Temperature (K)

(uv):

Dimensionless velocity components in x,y direction respectively

\(V_{0}\) :

Reference velocity (m/s)

\(\alpha\) :

Thermal diffusivity (\(m^{2}/s\))

\(\beta _{f}\) :

Coefficient of thermal expansion (\(K^{-1}\))

\(\theta\) :

Dimensionless temperature

\(\rho\) :

Density (\(kg/m^{3}\))

\(\phi\) :

Nanoparticle volume fraction

av :

Average

c :

Cold

f :

Clear fluid

h :

Hot

nf :

Nanofluid

p :

Solid particle

s :

Solid wall

\(*\) :

Dimensional quantity

References

  1. Morzynski M, Popiel CZO (1988) Laminar heat transfer in a two-dimensional cavity covered by a moving wall. Numer Heat Transf 13(2):265–273

  2. Koseff JR, Street RL (1984) The lid-driven cavity flow: a synthesis of qualitative and quantitative observations

  3. Tao YB, He YL (2010) Numerical study on coupled fluid flow and heat transfer process in parabolic trough solar collector tube. Sol Energy 84(10):1863–1872

    Article  Google Scholar 

  4. Kefayati GHR (2014) Mixed convection of non-newtonian nanofluids flows in a lid-driven enclosure with sinusoidal temperature profile using fdlbm. Powder Technol 266:268–281

    Article  CAS  Google Scholar 

  5. Minaei A, Ashjaee M, Goharkhah M (2014) Experimental and numerical study of mixed and natural convection in an enclosure with a discrete heat source and ventilation ports. Heat Transf Eng 35(1):63–73

    Article  CAS  Google Scholar 

  6. Taji SG, Parishwad GV, Sane NK (2014) Enhanced performance of horizontal rectangular fin array heat sink using assisting mode of mixed convection. Int J Heat Mass Transf 72:250–259

    Article  Google Scholar 

  7. **ong Q, Bozorg MV, Doranehgard MH, Hong K, Lorenzini G (2020) A cfd investigation of the effect of non-newtonian behavior of cu–water nanofluids on their heat transfer and flow friction characteristics. J Therm Anal Calorim 139:2601–2621

  8. Choi SUS, Eastman JA (1995) Enhancing thermal conductivity of fluids with nanoparticles. Technical report, Argonne National Lab. (ANL), Argonne, IL (United States)

  9. Brinkman HC (1952) The viscosity of concentrated suspensions and solutions. J Chem Phys 20(4):571–571

  10. Corcione M (2011) Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Convers Manage 52(1):789–793

    Article  CAS  Google Scholar 

  11. Levin ML, Miller MA (1981) Maxwell’s “treatise on electricity and magnetism.” Soviet Physics Uspekhi 24(11):904

    Article  Google Scholar 

  12. Abu-Nada E, Chamkha A (2010) Mixed convection flow in a lid-driven inclined square enclosure filled with a nanofluid. Eur J Mech B Fluids 29(6):472–482

  13. Mansour MA, Mohamed RA, Abd-Elaziz MM, Ahmed SE (2010) Numerical simulation of mixed convection flows in a square lid-driven cavity partially heated from below using nanofluid. Int Commun Heat Mass Transf 37(10):1504–1512

  14. Arefmanesh A, Mahmoodi M (2011) Effects of uncertainties of viscosity models for al2o3-water nanofluid on mixed convection numerical simulations. Int J Therm Sci 50(9):1706–1719

    Article  CAS  Google Scholar 

  15. Chamkha AJ, Abu-Nada E (2012) Effect of viscosity models. Mixed convection flow in single-and double-lid driven square cavities filled with water-al2o3 nanofluid. Eur J Mech B Fluids 36:82–96

    Article  Google Scholar 

  16. Wen D, Ding Y (2004) Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. Int J Heat Mass Transf 47(24):5181–5188

    Article  CAS  Google Scholar 

  17. Ding Y, Wen D (2005) Particle migration in a flow of nanoparticle suspensions. Powder Technol 149(2–3):84–92

    Article  CAS  Google Scholar 

  18. Kang H-U, Kim W-G, Kim S-H (2007) Effect of particle migration on the heat transfer of nanofluid. Korea Aust Rheol J 19(3):99–107

    Google Scholar 

  19. Buongiorno J (2006) Convective transport in nanofluids

  20. Sheremet MA, Pop I (2015) Buongiorno’s mathematical model, Mixed convection in a lid-driven square cavity filled by a nanofluid. Appl Math Comput 266:792–808

    Google Scholar 

  21. Garoosi F, Garoosi S, Hooman K (2014) Numerical simulation of natural convection and mixed convection of the nanofluid in a square cavity using buongiorno model. Powder Technol 268:279–292

    Article  CAS  Google Scholar 

  22. Motlagh SY, Soltanipour H (2017) Natural convection of al2o3-water nanofluid in an inclined cavity using buongiorno’s two-phase model. Int J Therm Sci 111:310–320

    Article  CAS  Google Scholar 

  23. Pal SK, Bhattacharyya S, Pop I (2019) A numerical study on non-homogeneous model for the conjugate-mixed convection of a cu-water nanofluid in an enclosure with thick wavy wall. Appl Math Comput 356:219–234

  24. Pakravan HA, Yaghoubi M (2013) Analysis of nanoparticles migration on natural convective heat transfer of nanofluids. Int J Therm Sci 68:79–93

    Article  CAS  Google Scholar 

  25. Fariñas Alvariño P, Sáiz Jabardo JM, Arce A, Lamas Galdo MI (2013) A numerical investigation of laminar flow of a water/alumina nanofluid. Int J Heat Mass Transf 59:423–432

  26. Malvandi A, Ganji DD (2014) Mixed convective heat transfer of water/alumina nanofluid inside a vertical microchannel. Powder Technol 263:37–44

    Article  CAS  Google Scholar 

  27. Esfandiary M, Mehmandoust B, Karimipour A, Ali Pakravan H (2016) Brownian motion and thermophoresis phenomenon. Natural convection of al2o3-water nanofluid in an inclined enclosure with the effects of slip velocity mechanisms. Int J Therm Sci 105:137–158

    Article  CAS  Google Scholar 

  28. Bhattacharyya S, Pal SK, Pop I (2019) Impact of nanoparticles migration on mixed convection and entropy generation of a Al2O3-water nanofluid inside an inclined enclosure with wavy side wall. J Therm Anal Calorim 138(5):3205–3221

    Article  CAS  Google Scholar 

  29. Teipel U, Förter-Barth U (2001) Rheology of nano-scale aluminum suspensions. Propellants, Explos, Pyrotech 26(6):268–272

    Article  CAS  Google Scholar 

  30. Tseng WJ, Wu CH (2002) Aggregation, rheology and electrophoretic packing structure of aqueous a12o3 nanoparticle suspensions. Acta Materialia 50(15):3757–3766

  31. Chen H, Ding Y, Lapkin A (2009) Rheological behaviour of nanofluids containing tube/rod-like nanoparticles. Powder Technol 194(1–2):132–141

    Article  CAS  Google Scholar 

  32. Kole M, Dey TK (2010) Viscosity of alumina nanoparticles dispersed in car engine coolant. Exp Thermal Fluid Sci 34(6):677–683

    Article  CAS  Google Scholar 

  33. Wright JL, Sullivan HF (1989) Natural convection in sealed glazing units: A review

  34. Kays WM, London AL (1984) Compact heat exchangers

  35. Sheremet MA, Pop I (2014) Conjugate natural convection in a square porous cavity filled by a nanofluid using buongiorno’s mathematical model. Int J Heat Mass Transf 79:137–145

    Article  Google Scholar 

  36. Nimmagadda R, Venkatasubbaiah K (2015) Conjugate heat transfer analysis of micro-channel using novel hybrid nanofluids (al2o3+ ag/water). Eur J Mech B Fluids 52:19–27

  37. Das S, Chakraborty S (2006) Analytical solutions for velocity, temperature and concentration distribution in electroosmotic microchannel flows of a non-newtonian bio-fluid. Anal Chim Acta 559(1):15–24

    Article  CAS  Google Scholar 

  38. Tang GH, Li XF, He YL, Tao WQ (2009) Electroosmotic flow of non-newtonian fluid in microchannels. J Nonnewton Fluid Mech 157(1–2):133–137

    Article  CAS  Google Scholar 

  39. Zhao C, Yang C (2011) An exact solution for electroosmosis of non-newtonian fluids in microchannels. J Nonnewton Fluid Mech 166(17–18):1076–1079

    Article  CAS  Google Scholar 

  40. Afonso AM, Alves MA, Pinho FT (2009) Analytical solution of mixed electro-osmotic/pressure driven flows of viscoelastic fluids in microchannels. J Nonnewton Fluid Mech 159(1–3):50–63

    Article  CAS  Google Scholar 

  41. Zhao C, Yang C (2011) Electro-osmotic mobility of non-newtonian fluids. Biomicrofluidics 5(1):014110

    Article  PubMed  PubMed Central  Google Scholar 

  42. Liu Q-S, Jian Y-J, Yang L-G (2011) Time periodic electroosmotic flow of the generalized maxwell fluids between two micro-parallel plates. J Nonnewton Fluid Mech 166(9–10):478–486

    Article  CAS  Google Scholar 

  43. Zhao C, Yang C (2009) Exact solutions for electro-osmotic flow of viscoelastic fluids in rectangular micro-channels. Appl Math Comput 211(2):502–509

    Google Scholar 

  44. Kefayati GHR (2015) Mesoscopic simulation of mixed convection on non-newtonian nanofluids in a two sided lid-driven enclosure. Adv Powder Technol 26(2):576–588

    Article  CAS  Google Scholar 

  45. Kefayati GHR (2017) Mixed convection of non-newtonian nanofluid in an enclosure using buongiorno’s mathematical model. Int J Heat Mass Transf 108:1481–1500

    Article  Google Scholar 

  46. Jain S, Nishad Surabhi, Bhargava R (2021) Numerical simulation on double diffusion natural convection of a power-law nanofluid within double wavy cavity. Phys Fluids 33(7):072013

    Article  CAS  Google Scholar 

  47. Jayaraj S (1999) Finite difference modelling of natural convection flow with thermophoresis. Internat J Numer Methods Heat Fluid Flow 9(6):692–705

    Article  CAS  Google Scholar 

  48. Cho C-C (2019) Mixed convection heat transfer and entropy generation of cu-water nanofluid in wavy-wall lid-driven cavity in presence of inclined magnetic field. Int J Mech Sci 151:703–714

    Article  Google Scholar 

  49. Zhao J (2021) Finite volume method for mixed convection boundary layer flow of viscoelastic fluid with spatial fractional derivatives over a flat plate. Comput Appl Math 40(1):10

    Article  Google Scholar 

  50. Nasrin R (2012) Influences of physical parameters on mixed convection in a horizontal lid-driven cavity with an undulating base surface. Numer Heat Transf A Appl 61(4):306–321

    Article  Google Scholar 

  51. Roy M, Roy S, Basak T (2016) Analysis of entropy generation for mixed convection within porous square cavities: Effects of various moving walls. Numer Heat Transf A Appl 70(7):738–762

  52. Ellero M, Kröger M, Hess S (2002) Viscoelastic flows studied by smoothed particle dynamics. J Nonnewton Fluid Mech 105(1):35–51

    Article  CAS  Google Scholar 

  53. Rossi E, de Beristain IG, Vazquez-Quesada A, López-Aguilar JE, Ellero M (2022) Sph simulations of thixo-viscoplastic fluid flow past a cylinder. J Nonnewton Fluid Mech 308:104891

    Article  CAS  Google Scholar 

  54. Ellero M, Tanner RI (2005) Sph simulations of transient viscoelastic flows at low reynolds number. J Nonnewton Fluid Mech 132(1–3):61–72

    Article  CAS  Google Scholar 

  55. Ten Bosch BIM (1999) On an extension of dissipative particle dynamics for viscoelastic flow modelling. J Nonnewton Fluid Mech 83(3):231–248

    Article  Google Scholar 

  56. Prieto JL (2016) An rbf-reconstructed, polymer stress tensor for stochastic, particle-based simulations of non-newtonian, multiphase flows. J Nonnewton Fluid Mech 227:90–99

    Article  Google Scholar 

  57. Sun J, Yi H-L, Tan H-P (2016) Local rbf meshless scheme for coupled radiative and conductive heat transfer. Numer Heat Transf A Appl 69(12):1390–1404

    Article  CAS  Google Scholar 

  58. Kansa EJ (1990) Multiquadrics–a scattered data approximation scheme with applications to computational fluid-dynamics–i surface approximations and partial derivative estimates. Comput Math Appl 19(8-9):127–145

  59. Kansa EJ (1990) Multiquadrics–a scattered data approximation scheme with applications to computational fluid-dynamics–ii solutions to parabolic, hyperbolic and elliptic partial differential equations. Comput Math Appl 19(8-9):147–161

  60. Hardy RL (1971) Multiquadric equations of topography and other irregular surfaces. J Peophys Res 76(8):1905–1915

  61. Sanyasiraju YVSS, Chandhini G (2008) Local radial basis function based gridfree scheme for unsteady incompressible viscous flows. J Comput Phys 227(20):8922–8948

    Article  Google Scholar 

  62. Haddad Z, Oztop HF, Abu-Nada E, Mataoui A. A review on natural convective heat transfer of nanofluids. Renew Sust Energy Rev 16(7):5363–5378, 2012

  63. Xuan Y, Li Q (2003) Investigation on convective heat transfer and flow features of nanofluids. J Heat Transf 125(1):151–155

    Article  CAS  Google Scholar 

  64. Laidoudi H, Ameur H (2020) Investigation of the mixed convection of power-law fluids between two horizontal concentric cylinders: Effect of various operating conditions. Therm Sci Eng Prog 20:100731

    Article  Google Scholar 

  65. Manchanda M, Gangawane KM (2018) Mixed convection in a two-sided lid-driven cavity containing heated triangular block for non-newtonian power-law fluids. Int J Mech Sci 144:235–248

  66. Varol Y, Oztop HF, Koca A (2008) Entropy production due to free convection in partially heated isosceles triangular enclosures. Appl Therm Eng 28(11-12):1502–1513

  67. Nayak RK, Bhattacharyya S, Pop I (2018) Effects of nanoparticles dispersion on the mixed convection of a nanofluid in a skewed enclosure. Int J Heat Mass Transf 125:908–919

    Article  CAS  Google Scholar 

  68. Franke R (1982) Scattered data interpolation: tests of some methods. Math Comput 38(157):181–200

    Google Scholar 

  69. Chandhini G, Sanyasiraju YVSS (2007) Local rbf-fd solutions for steady convection-diffusion problems. Int J Numer Meth Eng 72(3):352–378

    Article  Google Scholar 

  70. Shu C, Ding H, Yeo KS (2003) Local radial basis function-based differential quadrature method and its application to solve two-dimensional incompressible navier-stokes equations. Comput Methods Appl Mech Eng 192(7–8):941–954

    Article  Google Scholar 

  71. Pal SK, Sanyasiraju YVSS, Ohshima H, Gopmandal PP (2022) A meshless scheme on the electrokinetically driven flow of power-law fluid through nanochannel considering dual effects of heterogeneity in wall charge and surface wettability. J Non-Newtonian Fluid Mech 310:104943

  72. Ho CJ, Liu WK, Chang YS, Lin CC (2010) Natural convection heat transfer of alumina-water nanofluid in vertical square enclosures: an experimental study. Int J Therm Sci 49(8):1345–1353

    Article  CAS  Google Scholar 

  73. Gangawane KM, Manikandan B (2017) Laminar natural convection characteristics in an enclosure with heated hexagonal block for non-newtonian power law fluids. Chin J Chem Eng 25(5):555–571

  74. Daniel A, Dhiman A (2013) Aiding-buoyancy mixed convection from a pair of side-by-side heated circular cylinders in power-law fluids. Ind Eng Chem Res 52(48):17294–17314

    Article  CAS  Google Scholar 

Download references

Funding

Partha P. Gopmandal gratefully acknowledges the financial support by the Science and Engineering Research Board, Govt. of India, through a project grant (File No. MTR/2018/001021).

Author information

Authors and Affiliations

Authors

Contributions

S.K.P and P.P.G conceive the research idea; S.K.P and P.M prepare the figures, S.K.P., P.M., P.P.G wrote the first draft and all the authors reviewed the manuscript.

Corresponding author

Correspondence to Partha P. Gopmandal.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, S.K., Mandal, P., Ohshima, H. et al. A meshless numerical study of conjugate mixed convection of non-Newtonian nanofluids in an enclosure using non-homogeneous model. Colloid Polym Sci 302, 517–538 (2024). https://doi.org/10.1007/s00396-023-05200-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-023-05200-3

Keywords

Navigation