Log in

Study on direct current electrical breakdown properties of polyimide films with different thickness

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Polyimide (PI) films are wildly used in the field of electrical equipment and electronic devices due to their excellent thermal, electrical, and mechanical properties. The various mechanisms of sample thickness on the electrical breakdown of polyimide have been proposed. The purpose of this study is to apply the state of macromolecular aggregation to analyze the breakdown strength of PI film with different thickness. In this paper, the direct current (dc) electrical breakdown properties of PI films as a function of thickness were investigated employing water absorption, mechanical properties, thermal properties, and thermally stimulated depolarization current (TSDC). These experimental results exhibit a good coincidence with the breakdown measurement. On the condition of the structure of the polymeric molecules to the same case, the congregating state of the polymer might be the fundamental reason causing the dc electrical breakdown field of PI film with different thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Govindaraj B, Sarojadevi M (2018) Polym Adv Technol 29:1718

    Article  CAS  Google Scholar 

  2. Gu J, Lv Z, Wu Y, Guo Y, Tian L, Qiu H, Li W, Zhang Q (2017) Compos A Appl Sci Manuf 94:209

    Article  CAS  Google Scholar 

  3. Zhi X, Jiang G, Zhang Y, Jia Y, Wu L, An Y, Liu J, Liu Y (2022) J Appl Polym Sci 139:51544

    Article  CAS  Google Scholar 

  4. Ogbonna VE, Popoola A, Popoola OM, Adeosun SO (2022) Polym Bull 79:663

    Article  CAS  Google Scholar 

  5. Hu P, Shen Y, Guan Y, Zhang X, Lin Y, Zhang Q, Nan W (2014) Adv Func Mater 24:3172

    Article  CAS  Google Scholar 

  6. Liu XJ, Zheng MS, Chen G, Dang ZM, Zha JW (2021) Energy Environ Sci 15:56

    Article  Google Scholar 

  7. Tanaka T, Montanari GC, Mulhaupt R (2004) IEEE Trans Dielectr Electr Insul 11:763

    Article  CAS  Google Scholar 

  8. Lee JI, Kim M, Park KC, Lee CY, Park YD (2022) Mater Chem Phys 278:125661

    Article  CAS  Google Scholar 

  9. Fu M, Chen G, Dissado LA, Fothergill JC (2007) IEEE Trans Dielectr Electr Insul 14:53

    Article  CAS  Google Scholar 

  10. Tanaka K, Okano M, Kita H, Okamoto KI, Nishi S (1994) Polym J 26:1186

    Article  CAS  Google Scholar 

  11. Abdel-Salam M (2007) IEEE Trans Ind Appl 21:35

    Google Scholar 

  12. Klein N (1978) Thin Solid Films 50:223

    Article  CAS  Google Scholar 

  13. Diaham S, Zelmat S, Locatelli ML, Dinculescu S (2010) IEEE Trans Dielectr Electr Insul 17:18

  14. Paskaleva A, Atanassova E, Lemberger M, Bauer AJ (2006) Springer. Netherlands 220:422

    Google Scholar 

  15. Forlani F, Minnaja N (1969) J Vac Sci Technol 6:518

    Article  CAS  Google Scholar 

  16. Chen G, Zhao J, Li S, Zhong L (2012) Appl Phys Lett 100:2135

    Google Scholar 

  17. Neusel C, Jelitto H, Schmidt D, Janssen R, Felten F (2015) J Eur Ceram Soc 35:113

    Article  CAS  Google Scholar 

  18. Min D, Li Y, Yan C, **e D, Li S, Wu Q (2018) Polymers 10:3390

    Google Scholar 

  19. Feng QK, Liu DF, Zhang YX, Pei JY, Zhong SL, Hu HY, Wang XJ, Dang ZM (2022) Nano Energy 99:107410

    Article  CAS  Google Scholar 

  20. Diaham S, Zelmat S, Locatelli ML, Dinculescu S, Decup M, Lebey T (2010) IEEE Trans Dielectr Electr Insul 17:18

    Article  CAS  Google Scholar 

  21. Nakashima Y, Zhou Y, Tanabe K, Arima S, Hirao K, Ohji T, Murayama N, Fukushima M (2022) J Am Ceram Soc 106:1139

    Article  Google Scholar 

  22. Nakashima Y, Hyuga H, Hirao K, Zhou Y, Fukushima M, Murayama N (2021) J Ceram Soc Jpn 129:761

    Article  CAS  Google Scholar 

  23. Stark S (2022) J Eur Ceram Soc 42:462

    Article  CAS  Google Scholar 

  24. Zhao L, Liu CL (2020) Nanomaterials 10:2473

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zakrevskii VA, Pakhotin VA, Sudar NT (2014) J Appl Phys 115:234101

    Article  Google Scholar 

  26. Zhang CY, Shi WC, Wang Q, Hiziroglu HR (2021) Polymers 13:2956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liufu D, Wang X, Tu D, Kao K (1998) J Appl Phys 83:2209

    Article  CAS  Google Scholar 

  28. Wang HY, Xu YZ, Yu XH, **ng RB, Liu JG, Han YC (2014) Polymers 5:1272

  29. Min DM, Cui HZ, Wang WW, Wu QZ, **ng ZL, Li ST  (2019) Compos Sci Technol 184:107873

  30. Mazzanti G, Montanari GC, Alison JM (2003) IEEE Trans Dielectr Electr Insul 10:187

    Article  Google Scholar 

  31. Akram S, Yang Y, Zhong X (2018) IEEE Trans Dielectr Electr Insul 25:1461

    Article  CAS  Google Scholar 

  32. Bisquert J, Halpern V (2001) J Phys D Appl Phys 34:22

  33. Chen DN (1987) J Phys 7:838

  34. Lei QQ  (1990) Huazhong University of Science and Technology Press 247 (in Chinese)

  35. Takahashi F, Ito K, Morikawa J, Hashimoto T, Hatta I (2004) Jpn J Appl Phys Part 1 43:7200

    Article  CAS  Google Scholar 

  36. Yin Y, Tu DM, Li M, Li ZH (2000) Proceedings of the CSEE 20:4

    Google Scholar 

Download references

Funding

This work is supported by the State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources (Grant No. LAPS21022) and the fund of **nbang Electronic Co. Ltd (Grant No. 20213702030785).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lili Ma.

Ethics declarations

Consent for publication

The article is original, has been written by the stated authors who are all aware of its content and approve its submission, and has not been published previously; it is not under consideration for publication elsewhere.

Conflict of interest

No conflict of interest exists.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ba, Z., Liu, H., Li, C. et al. Study on direct current electrical breakdown properties of polyimide films with different thickness. Colloid Polym Sci 301, 313–318 (2023). https://doi.org/10.1007/s00396-023-05060-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-023-05060-x

Keywords

Navigation