Log in

Differential association between dairy intake patterns and incident prostate cancer: a potential dairy matrix effect

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Objective

To evaluate the association between dairy intake patterns and the risk of prostate cancer (PC), and its histological differentiation, among men from Mexico City.

Methods

We analyzed the information from 394 incident PC cases paired by age (± 5 years) with 794 population controls. According to the Gleason score at diagnosis, cases were classified as well- (≤ 6), moderately- (= 7), and poorly differentiated PC (≥ 8). Based on a semiquantitative-food frequency questionnaire and using energy–density approach, we estimated the energy-adjusted daily intake of whole milk, cheese (fresh, Oaxaca, and Manchego), cream, and yogurt. Through a principal component analysis, we identified three dairy intake patterns: whole milk, cheese, and yogurt. The association between each dairy intake pattern and PC was evaluated from independent nonconditional logistic regression models. We also evaluated the mediator role of calcium and saturated fat intake.

Results

After adjustment, a high intake of whole milk pattern was associated with a 63% increased risk of PC (ORhigh vs low: 1.63; 95% CI 1.17–2.25, p trend = 0.002); at expenses of moderately (ORhigh vs low: 1.77; 95% CI 1.09–2.85, p trend = 0.015) and poorly differentiated PC (ORhigh vs low: 1.75; 95% CI 1.05– 2.92, p trend = 0.031). The association was mainly mediated by calcium intake (proportion mediated = 1.17; p < 0.01). No associations were found between cream and yogurt intake patterns with risk of PC, and its histological grade.

Conclusions

A differential association of dairy intake patterns with risk of PC, and the poorly differentiated PC, was identified. This association seems to be determined by different dairy matrices and it is mediated by calcium content. Longitudinal studies are needed to confirm these findings and be able to identify other potential mediators in the etiology of PC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Weaver CM (2021) Dairy matrix: is the whole greater than the sum of the parts? Nutr Rev 79(Suppl 2):4–15. https://doi.org/10.1093/nutrit/nuab081

    Article  PubMed  PubMed Central  Google Scholar 

  2. Thorning TK, Bertram HC, Bonjour JP et al (2017) Whole dairy matrix or single nutrients in assessment of health effects: current evidence and knowledge gaps. Am J Clin Nutr 5:1033–1045. https://doi.org/10.3945/ajcn.116.151548

    Article  CAS  Google Scholar 

  3. Barrubés L, Babio N, Becerra-Tomás N et al (2019) Association between dairy product consumption and colorectal cancer risk in adults: a systematic review and meta-analysis of epidemiologic studies. Adv Nutr 10(suppl_2):S190–S211. https://doi.org/10.1093/advances/nmy114

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chen Z, Ahmed M, Ha V et al (2021) Dairy product consumption and cardiovascular health: a systematic review and meta-analysis of prospective cohort studies. Adv Nutr 13(2):439–454. https://doi.org/10.1093/advances/nmab118

    Article  CAS  PubMed Central  Google Scholar 

  5. Watson WH, Cai J, Jones DP (2000) Diet and apoptosis. Annu Rev Nutr 20:485–505. https://doi.org/10.1146/annurev.nutr.20.1.485

    Article  CAS  PubMed  Google Scholar 

  6. López-Plaza B, Bermejo LM, Santurino C et al (2019) Milk and dairy product consumption and prostate cancer risk and mortality: an overview of systematic reviews and meta-analyses. Adv Nutr 10(suppl_2):S212–S223. https://doi.org/10.1093/advances/nmz014

    Article  PubMed  PubMed Central  Google Scholar 

  7. Qin LQ, Xu JY, Wang PY et al (2004) Milk consumption is a risk factor for prostate cancer: meta-analysis of case-control studies. Nutr Cancer 48(1):22–27. https://doi.org/10.1207/s15327914nc4801_4

    Article  PubMed  Google Scholar 

  8. Feeney EL, O’Sullivan A, Nugent AP et al (2017) Patterns of dairy food intake, body composition and markers of metabolic health in Ireland: results from the National Adult Nutrition Survey. Nutr Diabetes 7(2):e243. https://doi.org/10.1038/nutd.2016.54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yuzbashian E, Pakseresht M, Vena J et al (2022) Association of dairy consumption patterns with the incidence of type 2 diabetes: findings from Alberta’s tomorrow project. Nutr Metab Cardiovasc Dis 32(12):2760–2771. https://doi.org/10.1016/j.numecd.2022.09.022

    Article  PubMed  Google Scholar 

  10. Ferlay J, Ervik M, Lam F, Colombet M, et al (2020) Global cancer observatory: cancer today. Lyon, France: International Agency for Research on Cancer. Available from: https://gco.iarc.fr/today, Accessed [21/03/2022].

  11. Rivera-Dommarco J, López-Olmedo N, Aburto-Soto T, et al (2014) Consumo de productos lácteos en población mexicana. Resultados de la Encuesta Nacional de Salud y Nutrición 2012. México: Instituto Nacional de Salud Pública.

  12. Vázquez-Salas RA, Torres-Sánchez L, López-Carrillo L et al (2016) History of gonorrhea and prostate cancer in a population-based case-control study in Mexico. Cancer Epidemiol 40:95–101. https://doi.org/10.1016/j.canep.2015.12.001

    Article  PubMed  Google Scholar 

  13. Hernández-Avila M, Romieu I, Parra S, Hernández-Avila J, Madrigal H, Willett W (1998) Validity and reproducibility of a food frequency questionnaire to assess dietary intake of women living in Mexico City. Salud Publica Mex 40:133–140

    Article  PubMed  Google Scholar 

  14. Hernández-Ramírez RU, Galván-Portillo MV, Ward MH et al (2009) Dietary intake of polyphenols, nitrate and nitrite and gastric cancer risk in Mexico City. Int J Cancer 125(6):1424–1430. https://doi.org/10.1002/ijc.24454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Willett WC, Howe GR, Kushi LH (1997) Adjustment for total energy intake in epidemiologic studies. Am J Clin Nutr 65(4 Suppl):1220S-1228S. https://doi.org/10.1093/ajcn/65.4.1220S. (discussion 1229S-1231S)

    Article  CAS  PubMed  Google Scholar 

  16. Galván-Portillo M, Vázquez-Salas RA, Hernández-Pérez JG (2021) Dietary flavonoid patterns and prostate cancer: evidence from a Mexican population-based case-control study. Br J Nutr 127:1–9. https://doi.org/10.1017/S0007114521002646

    Article  Google Scholar 

  17. Vázquez-Salas RA, Shivappa N, Galván-Portillo M et al (2016) Dietary inflammatory index and prostate cancer risk in a case-control study in Mexico. Br J Nutr 116(11):1945–1953. https://doi.org/10.1017/S0007114516003986

    Article  CAS  PubMed  Google Scholar 

  18. Jiménez-Mendoza E, Vázquez-Salas RA, Barrientos-Gutierrez T et al (2018) Smoking and prostate cancer: a life course analysis. BMC Cancer 18(1):160. https://doi.org/10.1186/s12885-018-4065-7

    Article  PubMed  PubMed Central  Google Scholar 

  19. Vázquez-Salas RA, Torres-Sánchez L, Galván-Portillo M, et al (2022) Association between life-course leisure-time physical activity and prostate cancer. Salud Publica Mex 64(2):169–178. https://doi.org/10.21149/12540

  20. Hernández-Pérez JG, Torres-Sánchez L, Hernández-Alcaráz C et al (2022) Metabolic syndrome and prostate cancer risk: a population case-control study. Arch Med Res 53(6):594–602. https://doi.org/10.1016/j.arcmed.2022.07.003

    Article  CAS  PubMed  Google Scholar 

  21. Deneo-Pellegrini H, Ronco AL, De Stefani E et al (2012) Food groups and risk of prostate cancer: a case-control study in Uruguay. Cancer Causes Control 23(7):1031–1038. https://doi.org/10.1007/s10552-012-9968-z

    Article  PubMed  Google Scholar 

  22. Raimondi S, Mabrouk JB, Shatenstein B et al (2010) Diet and prostate cancer risk with specific focus on dairy products and dietary calcium: a case-control study. Prostate 70(10):1054–1065. https://doi.org/10.1002/pros.21139

    Article  CAS  PubMed  Google Scholar 

  23. Mikami K, Ozasa K, Miki T et al (2021) JACC study group. Dairy products and the risk of develo** prostate cancer: A large-scale cohort study (JACC Study) in Japan. Cancer Med 10(20):7298–7307. https://doi.org/10.1002/cam4.4233

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lane JA, Oliver SE, Appleby PN et al (2017) Prostate cancer risk related to foods, food groups, macronutrients and micronutrients derived from the UK Dietary Cohort Consortium food diaries. Eur J Clin Nutr 71(2):274–283. https://doi.org/10.1038/ejcn.2016.162

    Article  CAS  PubMed  Google Scholar 

  25. Mercogliano MF, Bruni S, Mauro F et al (2021) Tumor necrosis factor alpha to achieve effective cancer immunotherapy. Cancers (Basel) 13(3):564. https://doi.org/10.3390/cancers13030564

    Article  CAS  PubMed  Google Scholar 

  26. Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357(9255):539–545. https://doi.org/10.1016/S0140-6736(00)04046-0

    Article  CAS  PubMed  Google Scholar 

  27. Cruceriu D, Baldasici O, Balacescu O et al (2020) The dual role of tumor necrosis factor-alpha (TNF-α) in breast cancer: molecular insights and therapeutic approaches. Cell Oncol (Dordr) 43(1):1–18. https://doi.org/10.1007/s13402-019-00489-1

    Article  CAS  PubMed  Google Scholar 

  28. Egberts JH, Cloosters V, Noack A et al (2008) Anti-tumor necrosis factor therapy inhibits pancreatic tumor growth and metastasis. Cancer Res 68(5):1443–1450. https://doi.org/10.1158/0008-5472.CAN-07-5704

    Article  CAS  PubMed  Google Scholar 

  29. Zhao C, Lu X, Bu X et al (2010) Involvement of tumor necrosis factor-alpha in the upregulation of CXCR4 expression in gastric cancer induced by Helicobacter pylori. BMC Cancer 10:419. https://doi.org/10.1186/1471-2407-10-419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gupta M, Babic A, Beck AH et al (2016) TNF-α expression, risk factors, and inflammatory exposures in ovarian cancer: evidence for an inflammatory pathway of ovarian carcinogenesis? Hum Pathol 54:82–91. https://doi.org/10.1016/j.humpath.2016.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Maolake A, Izumi K, Natsagdorj A et al (2018) Tumor necrosis factor-α induces prostate cancer cell migration in lymphatic metastasis through CCR7 upregulation. Cancer Sci 109(5):1524–1531. https://doi.org/10.1111/cas.13586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fardet A, Dupont D, Rioux LE et al (2019) Influence of food structure on dairy protein, lipid and calcium bioavailability: a narrative review of evidence. Crit Rev Food Sci Nutr 59(13):1987–2010. https://doi.org/10.1080/10408398.2018.1435503

    Article  CAS  PubMed  Google Scholar 

  33. Unal G, El SN, Kiliç S (2005) In vitro determination of calcium bioavailability of milk, dairy products and infant formulas. Int J Food Sci Nutr 56(1):13–22. https://doi.org/10.1080/09637480500081423

    Article  CAS  PubMed  Google Scholar 

  34. Djillani A, Doignon I, Luyten T, Lamkhioued B, Gangloff SC, Parys JB et al (2015) Potentiation of the store-operated calcium entry (SOCE) induces phytohemagglutinin-activated Jurkat T cell apoptosis. Cell Cal 58(2):171–85. https://doi.org/10.1016/j.ceca.2015.04.005

    Article  CAS  Google Scholar 

  35. Liu H, Hughes JD, Rollins S et al (2011) Calcium entry via ORAI1 regulates glioblastoma cell proliferation and apoptosis. Exp Mol Pathol 91(3):753–760. https://doi.org/10.1016/j.yexmp.2011.09.005

    Article  CAS  PubMed  Google Scholar 

  36. Sergeev IN (2004) Calcium as a mediator of 1,25-dihydroxyvitamin D3-induced apoptosis. J Steroid Biochem Mol Biol 89–90(1–5):419–425. https://doi.org/10.1016/j.jsbmb.2004.03.010

    Article  CAS  PubMed  Google Scholar 

  37. Strom SS, Yamamura Y, Forman MR et al (2008) Saturated fat intake predicts biochemical failure after prostatectomy. Int J Cancer 122(11):2581–2585. https://doi.org/10.1002/ijc.23414

    Article  CAS  PubMed  Google Scholar 

  38. Yang J, Li S, He L et al (2021) Adipose-derived stem cells inhibit dermal fibroblast growth and induce apoptosis in keloids through the arachidonic acid-derived cyclooxygenase-2/prostaglandin E2 cascade by paracrine. Burns Trauma 9:tkab020. https://doi.org/10.1093/burnst/tkab020

    Article  PubMed  PubMed Central  Google Scholar 

  39. Watts EL, Fensom GK, Smith Byrne K et al (2021) Circulating insulin-like growth factor-I, total and free testosterone concentrations and prostate cancer risk in 200 000 men in UK Biobank. Int J Cancer 148(9):2274–2288. https://doi.org/10.1002/ijc.33416

    Article  CAS  PubMed  Google Scholar 

  40. Romo Ventura E, Konigorski S, Rohrmann S et al (2020) Association of dietary intake of milk and dairy products with blood concentrations of insulin-like growth factor 1 (IGF-1) in Bavarian adults. Eur J Nutr 59(4):1413–1420. https://doi.org/10.1007/s00394-019-01994-7

    Article  CAS  PubMed  Google Scholar 

  41. Kaklamani VG, Linos A, Kaklamani E et al (1999) Dietary fat and carbohydrates are independently associated with circulating insulin-like growth factor 1 and insulin-like growth factor-binding protein 3 concentrations in healthy adults. J Clin Oncol 17(10):3291–3298. https://doi.org/10.1200/JCO.1999.17.10.3291

    Article  CAS  PubMed  Google Scholar 

  42. Torres-Sánchez LE, Hernández-Pérez JG, Escamilla-Nuñez C et al (2023) Disparities on prostate cancer survival in Mexico: a retrospective cohort study. Salud Publica Mex 65(3):236–44. https://doi.org/10.21149/14266

    Article  PubMed  Google Scholar 

  43. Gutiérrez JP, Rivera-Dommarco J, Shamah-Levy T (2013) Encuesta Nacional de Salud y Nutrición 2012. Resultados nacionales. 2a. ed. Cuernavaca, México: Instituto Nacional de Salud Pública (MX)

  44. Denova-Gutiérrez E, Ramírez-Silva I, Rodríguez-Ramírez S et al (2016) Validity of a food frequency questionnaire to assess food intake in Mexican adolescent and adult population. Salud Publica Mex 58(6):617–628. https://doi.org/10.21149/spm.v58i6.7862

    Article  PubMed  Google Scholar 

  45. Wright JL, Salinas CA, Lin DW et al (2009) Prostate cancer specific mortality and Gleason 7 disease differences in prostate cancer outcomes between cases with Gleason 4 + 3 and Gleason 3 + 4 tumors in a population based cohort. J Urol. 182(6):2702–7. https://doi.org/10.1016/j.juro.2009.08.026

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lan T, Park Y, Colditz GA et al (2020) Adolescent dairy product and calcium intake in relation to later prostate cancer risk and mortality in the NIH-AARP Diet and Health Study. Cancer Causes Control 31(10):891–904. https://doi.org/10.1007/s10552-020-01330-z

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank the following hospitals for their collaboration in the development of this study: Hospital General de México, Instituto Nacional de Cancerología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Hospital de Oncología del Centro Médico Siglo XXI, Hospital General Regional No.1 “Dr. Carlos McGregor Sánchez Navarro”, and Hospital Regional “Adolfo López Mateos”. In addition, we thank the Centre for Support and Training in Analysis and Research for their partial support in statistical analysis.

Funding

This study was funded by Fondo Sectorial en Salud del Consejo Nacional de Ciencia y Tecnología de México (CONACYT). Funding number: 140482 and 272810. In addition, LLA-G received a scholarship from CONAHCYT (Grant number: 689003); nevertheless, this agency did not participate in the study design, statistical analysis or in the manuscript writing.

Author information

Authors and Affiliations

Authors

Contributions

Performance the analysis and interpretation of data and wrote the first draft of the manuscript (LLA-G). Design and review of the statistical analysis as well as participated in the interpretation of the data and manuscript writing (JGH-P). Made a critical revision of the manuscript and contributed with important intellectual content (EF, DSL). Participated in the study design and data collection and interpretation (RAV-S, MVG-P). Conceptualized and designed the study; supervised the acquisition, analysis, and interpretation of data; and participated in manuscript writing (LT-S). All the authors made a critical review of previous versions of the manuscript and approved the final version.

Corresponding author

Correspondence to Luisa Torres-Sánchez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Ethics Committee of the National Institute of Public Health (CI 980) and by the participating hospitals.

Consent to participate

Informed consent was obtained from all participants included in the study.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 88 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Armenta-González, L.L., Hernández-Pérez, J.G., Feeney, E.L. et al. Differential association between dairy intake patterns and incident prostate cancer: a potential dairy matrix effect. Eur J Nutr 63, 847–857 (2024). https://doi.org/10.1007/s00394-023-03315-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-023-03315-5

Keywords

Navigation