Log in

Role of nitric oxide in the control of the hypothalamic-pituitary-adrenocortical axis

Die Modulation der Glukokortikoidsekretion durch Stickoxid

  • Published:
Zeitschrift für Rheumatologie Aims and scope Submit manuscript

Zusammenfassung

Ebenso wie in Endothelzellen und Makrophagen wird Stickoxid (NO) im Zentralnervensystem von Neuronen, die durch Glutamat über den ionotropen N-methyl-D-aspartate (NMDA)-Rezeptor erregt werden, in einer komplexen Reaktion von Stickoxidsynthase (NOS) aus L-Arginin synthetisiert. Nach Diffusion in den extraneuronalen Raum vermag NO in anderen Neuronen, die in der Regel keine NOS enthalten, die Guanylatzyklase zu stimulieren, wodurch je nach intrazellulärer Ausstattung mit Targetmolekülen des cGMP die neuronale Erregbarkeit verstärkt oder abgeschwächt wird. Eine weitere wichtige Eigenschaft des NO liegt in seiner Fähigkeit benachbarte Sulfhydryle (Thiole) zu Disulfiden zu oxidieren. Da die Öffnung des Ca2+-Ionen-Kanals des NMDA-Rezeptors neben anderen Rezeptoren über freie Thiolgruppen gesteuert wird, übt NO durch deren Oxidation zu Disulfiden eine hemmende Wirkung auf die glutamaterge Übertragung aus. Immunhistochemische Studien haben in nahezu allen Kerngebieten des Hypothalamus eine Koexistenz von NOS mit den entsprechenden Peptiden in zahlreichen Releasing-Hormon-produzierenden Neuronen nachgewiesen. Diese Ergebnisse lassen den Schluss zu, dass NO über den redoxsensitiven Mechanismus des NMDA-Rezeptors die Neurosekretion generell modulierend beeinflusst und über Corticotropin-Releasing-Hormon(CRH)-produzierende Neurone speziell die Steuerung der Hypothalamus-Hypophysen-Nebennierenrinden-Achse moduliert. Diese hemmende Wirkung von NO und CRH-Neurone ist um so mehr von Bedeutung, weil eine erhöhte Sekretion suprarenaler Glukokortikoide im Zentralnervensystem die glutamaterge Neurotransmission verstärkt, zum einen durch gesteigerte de novo Synthese von NMDA-Rezeptoren, und zum anderen durch die Blockade der präsynaptischen Wiederaufnahme von Glutamat.

Summary

The gaseous radical nitric oxide (NO) is catalyzed by conversion of L-arginine to L-citrulline by one cytokine inducible form (iNOS), which becomes active only within hours after the inducing event, and by two constitutively expressed forms, endothelial (eNOS) and neuronal (nNOS), which are regulated by the cytosolic concentration of free Ca2+. Brain nNOS is physiologically present in discrete populations of neurons, which are all excited by glutamate via the ionotropic N-methyl-D-aspartate (NMDA) receptor, which controls a Ca2+ channel. After its diffusion into the extraneuronal space, NO may activate in neurons, which as a rule do not stain for NOS, soluble guanylyl cyclase and formation of cGMP as an intracellular messenger. Beyond that, NO is important as a feedback regulator of glutamatergic excitation. NO as a nitrosylating agent enhances disulfide bonding of vicinal sulfhydryl (thiol) groups of the redox modulatory site of the NMDA receptor complex and thereby down-regulates its Ca2+ channel activity. Histochemically studies have revealed the presence of large number of NOS containing neurons in the magnocellular and parvocellular subdivisions of hypothalamic nuclei. Numerous studies conform to the view that NO participates in the control of many different neurosecretory processes, especially of the corticotropin-releasing hormone (CRH) neurosecretory system. The redox-modulatory site of the NMDA receptor appears, therefore, as a critical structure in the control of the hypothalamic-pituitary-adrenocortical (HPA) axis. Moreover, glucocorticoids augment neuronal excitotoxicity by increasing the expression of glutamate receptors and inhibition of glutamate reuptake. In attempting to explain the many conflicting results obtained in studies with NO, it may be worthwhile to consider that the actual redox-environment of distinct loci of the brain may determine the final function of NO, acting either as a transmitter or neuromodulator or, in the worst case, causing neurodestruction. It seems likely that any kind of stress by altering the ratio of reduced vs oxidized thiols within the central nervous system influences neuronal excitability, with NO working either as an amplifier or as a feedback regulator of neuronal excitation or inhibition, which may alter acutely or chronically, among others, the homeostasis of a given neurosecretory system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riedel, W. Role of nitric oxide in the control of the hypothalamic-pituitary-adrenocortical axis. Z Rheumatol 59 (Suppl 2), II36–II42 (2000). https://doi.org/10.1007/s003930070016

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s003930070016

Navigation