Log in

Evaluation of CMIP6 models for simulations of surplus/deficit summer monsoon conditions over India

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

This study uses the 30 General Circulation Models (GCMs) from the Coupled Model Intercomparison Project phase-6 (CMIP6) to examine the simulations of the surplus/deficit Indian summer monsoon rainfall (ISMR) and its associated air-sea interactions on intraseasonal to interannual timescales. The majority of the CMIP6 models simulate the seasonal mean state of ISMR over the Indian mainland with systematic biases. Best performing models (BPM; AWI-ESM-1-1-LR, BCC-CSM2-MR, BCC-ESM1, CNRM-CM6-1, CNRM-ESM2-1, GFDL-CM4, INM-CM5-0, MIROC-ES2L, MIROC6, TaiESM1) well simulated the seasonal mean precipitation with Taylor skill score > 0.75 and normalized root mean square error (NRMSE) is < 0.7. However, the models are failed to simulate precipitation over the orographic regions (Western Ghats). Improving the simulations of low-level winds and sea surface temperature (SST) with high spatial resolutions would provide better precipitation simulations. B-MME (multimodel ensemble mean of BPM) can capture the negative IOD-like (Indian Ocean Dipole) pattern during deficit monsoon years and fail to capture the positive IOD-like pattern during surplus monsoon years. Models overestimate the moisture transport from the West Indian Ocean to the sub-continent of India during deficit monsoons, which plays a crucial role in modulating the precipitation and its associated intraseasonal variability. The present analysis identified that during deficit monsoon years, the faster moving 20–100 days oscillations are evident; however, these oscillations are sluggish during surplus monsoon years, which affects the duration of convection activity and causes dry conditions over the regions. During surplus monsoon years, the Bay of Bengal (Arabian Sea) responds strongly (slowly) to the atmosphere than the deficit monsoon years. However, models are fail to represent the ocean’s response to the atmosphere over the Bay of Bengal. The freshwater forcing improvement in the models simulates the ocean to atmosphere response over the Indian region. The present study further suggests that the improved simulation of the Indian summer monsoon (ISM) variability by the GCMs is possible by improving the ocean and atmosphere feedback mechanisms, sensitivities of the models among internal variables, and orographic features necessary for the accurate simulation of intraseasonal variability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data relevant to the paper can be downloaded from websites listed below: IMD precipitation: https://imdpune.gov.in/Clim_Pred_LRF_New/Grided_Data_Download.html. TRMM precipitation and SST: https://disc.gsfc.nasa.gov/datasets/TRMM_3B42_Daily_7. CMIP6 datasets: https://esgf-node.llnl.gov/search/cmip6/

References

  • Ahn MS, Kim D, Kang D, Lee J, Sperber KR, Gleckler PJ, Jiang X, Ham YG, Kim H (2020) MJO propagation across the maritime continent: are CMIP6 models better than CMIP5 models? Geophys Res Lett 47(11):p.e2020GL087250. https://doi.org/10.1029/2020GL087250

    Article  Google Scholar 

  • Almazroui M, Saeed F, Saeed S et al (2020) Projections of precipitation and temperature over the South Asian countries in CMIP6. Earth Syst Environ 4:297–320. https://doi.org/10.1007/s41748-020-00157-7

    Article  Google Scholar 

  • Almazroui M, Saeed F, Saeed S et al (2021) Projected changes in climate extremes using CMIP6 simulations over SREX regions. Earth Syst Environ 5:481–497. https://doi.org/10.1007/s41748-021-00250-5

    Article  Google Scholar 

  • Anandh PC, Vissa NK (2020) On the linkage between extreme rainfall and the Madden–Julian Oscillation over the Indian region. Meteorol Appl 27(2):e1901. https://doi.org/10.1002/met.1901

    Article  Google Scholar 

  • Annamalai H, Slingo JM (2001) Active/break cycles: diagnosis of the intraseasonal variability of the Asian summer monsoon. Clim Dyn 18(1):85–102. https://doi.org/10.1007/s003820100161

    Article  Google Scholar 

  • Annamalai H, Hamilton K, Sperber KR (2007) The South Asian summer monsoon and its relationship with ENSO in the IPCC AR4 simulations. J Clim 20(6):1071–1092

    Article  Google Scholar 

  • Ashok K, Guan Z, Yamagata T (2001) Impact of the Indian Ocean dipole on the relationship between the Indian monsoon rainfall and ENSO. Geophys Res Lett 28(23):4499–4502. https://doi.org/10.1029/2001GL013294

    Article  Google Scholar 

  • Ashok K, Guan Z, Saji NH, Yamagata T (2004) Individual and combined influences of ENSO and the Indian Ocean dipole on the Indian summer monsoon. J Clim 17(16):3141–3155.

    Article  Google Scholar 

  • Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res Oceans. https://doi.org/10.1029/2006JC003798

    Article  Google Scholar 

  • Ashok K, Feba F, Tejavath CT (2019) The Indian summer monsoon rainfall and ENSO. Mausam 70(3):443–452

    Article  Google Scholar 

  • Bracco A, Kucharski F, Molteni F, Hazeleger W, Severijns C (2007) A recipe for simulating the interannual variability of the Asian summer monsoon and its relation with ENSO. Clim Dyn 28(5):441–460

    Article  Google Scholar 

  • Chakravorty S, Gnanaseelan C, Pillai PA (2016) Combined influence of remote and local SST forcing on Indian Summer Monsoon Rainfall variability. Clim Dyn 47(9):2817–2831

    Article  Google Scholar 

  • Cherchi A, Navarra A (2013) Influence of ENSO and of the Indian Ocean Dipole on the Indian summer monsoon variability. Clim Dyn 41(1):81–103

    Article  Google Scholar 

  • Chowdary JS, Bandgar A, Gnanaseelan C, **g-Jia L (2015) Role of tropical Indian Ocean air–sea interactions in modulating Indian summer monsoon in a coupled mode. Atm Sci Let 16:170–176

    Article  Google Scholar 

  • Chowdary JS, Parekh A, Kakatkar R, Gnanaseelan C, Srinivas G, Singh P, Roxy MK (2016) Tropical Indian Ocean response to the decay phase of El Niño in a coupled model and associated changes in south and east-Asian summer monsoon circulation and rainfall. Clim Dyn 47(3):831–844. https://doi.org/10.1007/s00382-015-2874-9

    Article  Google Scholar 

  • Chowdary JS, Patekar D, Srinivas G, Gnanaseelan C, Parekh A (2019) Impact of the Indo-Western Pacifc Ocean capacitor mode on South Asian summer monsoon rainfall. Clim Dyn 53:2327

    Article  Google Scholar 

  • Dai X, Yang Y, Wang P (2022) Asian monsoon projection with a new large-scale monsoon definition. Theoret Appl Climatol 147(3):1003–1013

    Article  Google Scholar 

  • Dandi RA, Chowdary JS, Pillai PA, Sidhan NSS, SSVS R, (2020) Impact of El Niño Modoki on Indian summer monsoon rainfall: Role of western north Pacific circulation in observations and CMIP5 models. Int J Climatol 40(4):2117–2133

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer DP, Bechtold P (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597. https://doi.org/10.1002/qj.828

    Article  Google Scholar 

  • DeMott CA, Stan C, Randall DA (2013) Northward propagation mechanisms of the boreal summer intraseasonal oscillation in the ERA-Interim and SP-CCSM. J Clim 26(6):1973–1992

    Article  Google Scholar 

  • DeMott CA, Klingaman NP, Woolnough SJ (2015) Atmosphere-ocean coupled processes in the Madden-Julian oscillation. Rev Geophys 53(4):1099–1154. https://doi.org/10.1002/2014RG000478

    Article  Google Scholar 

  • DeMott CA, Benedict JJ, Klingaman NP, Woolnough SJ, Randall DA (2016) Diagnosing ocean feedbacks to the MJO: SST-modulated surface fluxes and the moist static energy budget. J Geophys Res Atmos 121(14):8350–8373

    Article  Google Scholar 

  • Duchon CE (1979) Lanczos filtering in one and two dimensions. J Appl Meteorol Climatol 18(80):1016–1022

    Article  Google Scholar 

  • Dutta U, Chaudhari HS, Hazra A, Pokhrel S, Saha SK, Veeranjaneyulu C (2020) Role of convective and microphysical processes on the simulation of monsoon intraseasonal oscillation. Clim Dyn 55(9):2377–2403. https://doi.org/10.1007/s00382-020-05387-z

    Article  Google Scholar 

  • Eyring V, Bony S, Meehl GA, Senior CA, Stevens B, Stouffer RJ, Taylor KE (2016) Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geosci Model Dev 9(5):1937–1958. https://doi.org/10.5194/gmd-9-1937-2016

    Article  Google Scholar 

  • Fu X, Wang B, Li T (2002) Impacts of air–sea coupling on the simulation of mean Asian summer monsoon in the ECHAM4 model. Mon Weather Rev 130(12):2889–2904. https://doi.org/10.1175/1520-0493(2002)130<2889:IOASCO>2.0.CO;2

    Article  Google Scholar 

  • Gadgil S (2003) The Indian monsoon and its variability. Annu Rev Earth Planet Sci 31(1):429–467

    Article  Google Scholar 

  • Gadgil S, Gadgil S (2006) The Indian monsoon, GDP and agriculture. Econ Political Wkly 4887–4895

  • Gadgil S, Vinayachandran PN, Francis PA (2004) Extremes of the Indian summer monsoon rainfall, ENSO and equatorial Indian Ocean oscillation. Geophys Res Lett 31:L12213

    Article  Google Scholar 

  • Gao Y, Klingaman NP, DeMott CA, Hsu PC (2019) Diagnosing ocean feedbacks to the BSISO: SST-modulated surface fluxes and the moist static energy budget. J Geophys Res Atmosph 124(1):146–170. https://doi.org/10.1029/2018JD029303

    Article  Google Scholar 

  • Goswami BN (1998) Inter-annual variation of Indian summer monsoon in a GCM: external conditions versus internal feedbacks. J Climatol 11:501–522

    Article  Google Scholar 

  • Goswami BN (2005) South asian monsoon. Intraseasonal variability in the atmosphere-ocean climate system. Springer, Heidelberg, pp 19–61. https://doi.org/10.1007/3-540-27250-X_2

    Chapter  Google Scholar 

  • Goswami BN, Mohan RA (2001) Intraseasonal oscillations and interannual variability of the Indian summer monsoon. J Clim 14(6):1180–1198. https://doi.org/10.1175/1520-0442(2001)014%3c1180:IOAIVO%3e2.0.CO;2

    Article  Google Scholar 

  • Goswami BN, Krishnamurthy V, Annmalai H (1999) A broad-scale circulation index for the interannual variability of the Indian summer monsoon. Q J R Meteorol Soc 125(554):611–633. https://doi.org/10.1002/qj.49712555412

    Article  Google Scholar 

  • Goswami BN, Wu G, Yasunari T (2006) The annual cycle, intraseasonal oscillations, and roadblock to seasonal predictability of the Asian summer monsoon. J Clim 19(20):5078–5099. https://doi.org/10.1175/JCLI3901.1

    Article  Google Scholar 

  • Goswami BB, Deshpande M, Mukhopadhyay P, Saha SK, Rao SA, Murthugudde R, Goswami BN (2014) Simulation of monsoon intraseasonal variability in NCEP CFSv2 and its role on systematic bias. Clim Dyn 43(9–10):2725–2745

    Article  Google Scholar 

  • Goswami BB, Krishna RPM, Mukhopadhyay P, Khairoutdinov M, Goswami BN (2015) Simulation of the Indian summer monsoon in the superparameterized climate forecast system version 2: preliminary results. J Clim 28(22):8988–9012. https://doi.org/10.1175/JCLI-D-14-00607.1

    Article  Google Scholar 

  • Goswami BN, Rao SA, Sengupta D, Chakravorty S (2016) Monsoons to mixing in the Bay of Bengal: multiscale air-sea interactions and monsoon predictability. Oceanography 29(2):18–27

    Article  Google Scholar 

  • Gusain A, Ghosh S, Karmakar S (2020) Added value of CMIP6 over CMIP5 models in simulating Indian summer monsoon rainfall. Atmosph Res 232:104680. https://doi.org/10.1016/j.atmosres.2019.104680

    Article  Google Scholar 

  • Hendon H (2005) Air-sea interaction. Intraseasonal variability in the atmosphere-ocean climate system. Springer, Berlin, pp 223–246

    Chapter  Google Scholar 

  • Hrudya PH, Varikoden H, Vishnu R, Kuttippurath J (2020) Changes in ENSO-monsoon relations from early to recent decades during onset, peak and withdrawal phases of Indian summer monsoon. Clim Dyn 55(5):1457–1471

    Article  Google Scholar 

  • Hrudya PH, Varikoden H, Vishnu R (2021) A review on the Indian summer monsoon rainfall, variability and its association with ENSO and IOD. Meteorol Atmos Phys 133(1):1–14

    Article  Google Scholar 

  • Hsu PC, Lee JY, Ha KJ, Tsou CH (2017) Influences of boreal summer intraseasonal oscillation on heat waves in monsoon Asia. J Clim 30(18):7191–7211. https://doi.org/10.1175/JCLI-D-16-0505.1

    Article  Google Scholar 

  • Huang F, Xu Z, Guo W (2020) The linkage between CMIP5 climate models’ abilities to simulate precipitation and vector winds. Clim Dyn 54(11):4953–4970

    Article  Google Scholar 

  • Huffman GJ, Adler RF, Bolvin DT, Nelkin EJ (2010) The TRMM multi-satellite precipitation analysis (TMPA). Satellite rainfall applications for surface hydrology. Springer, Dordrecht, pp 3–22. https://doi.org/10.1007/978-90-481-2915-7_1

    Chapter  Google Scholar 

  • Jain S, Mishra SK, Anand A, Salunke P, Fasullo JT (2021) Historical and projected low-frequency variability in the Somali Jet and Indian Summer Monsoon. Clim Dyn 56(3):749–765. https://doi.org/10.1007/s00382-020-05492-z

    Article  Google Scholar 

  • Jiang X, Li T, Wang B (2004) Structures and mechanisms of the northward propagating boreal summer intraseasonal oscillation. J Clim 17(5):1022–1039. https://doi.org/10.1175/1520-0442(2004)017%3c1022:SAMOTN%3e2.0.CO;2

    Article  Google Scholar 

  • Joseph S, Sahai AK, Goswami BN (2009) Eastward propagating MJO during boreal summer and Indian monsoon droughts. Clim Dyn 32(7):1139–1153

    Article  Google Scholar 

  • Joseph S, Sahai AK, Goswami BN (2010) Boreal summer intraseasonal oscillations and seasonal Indian monsoon prediction in DEMETER coupled models. Clim Dyn 35(4):651–667. https://doi.org/10.1007/s00382-009-0635-3.pdf

    Article  Google Scholar 

  • Ju J, Slingo J (1995) The Asian summer monsoon and ENSO. Q J R Meteorol Soc 121(525):1133–1168

    Article  Google Scholar 

  • Karmakar N, Misra V (2019) The relation of intraseasonal variations with local onset and demise of the Indian summer monsoon. J Geophys Res Atmos 124(5):2483–2506

    Article  Google Scholar 

  • Karmakar N, Misra V (2020) Differences in northward propagation of convection over the Arabian Sea and Bay of Bengal during boreal summer. J Geophys Res Atmos. https://doi.org/10.1029/2019JD031648

    Article  Google Scholar 

  • Karmakar N, Boos WR, Misra V (2021) Influence of intraseasonal variability on the development of monsoon depressions. Geophys Res Lett 48(2):p.e2020GL090425

    Article  Google Scholar 

  • Kikuchi K, Wang B, Kajikawa Y (2012) Bimodal representation of the tropical intraseasonal oscillation. Clim Dyn 38(9):1989–2000. https://doi.org/10.1007/s00382-011-1159-1

    Article  Google Scholar 

  • Konda G, Vissa NK (2019) Intraseasonal convection and air–sea fluxes over the Indian monsoon region revealed from the Bimodal ISO index. Pure Appl Geophys 176(8):3665–3680. https://doi.org/10.1007/s00024-019-02119-1

    Article  Google Scholar 

  • Konda G, Vissa NK (2021) Assessment of ocean-atmosphere interactions for the boreal summer intraseasonal oscillations in CMIP5 models over the Indian monsoon region. Asia-Pacific J Atmos Sci. https://doi.org/10.1007/s13143-021-00228-3

    Article  Google Scholar 

  • Kripalani RH, Kulkarni A (1997) Climatological impact of El Niño /La Niña on the Indian monsoon: a new perspective. Weather 52:39–46

    Article  Google Scholar 

  • Kripalani RH, Oh JH, Kulkarni A, Sabade SS, Chaudhari HS (2007) South Asian summer monsoon precipitation variability: coupled climate model simulations and projections under IPCC AR4. Theoret Appl Climatol 90(3):133–159

    Article  Google Scholar 

  • Krishnamurthy V, Ajayamohan RS (2010) Composite structure of monsoon low pressure systems and its relation to Indian rainfall. J Clim 23(16):4285–4305

    Article  Google Scholar 

  • Krishnamurthy V, Goswami BN (2000) Indian monsoon-ENSO relationship on interdecadal timescale. J Clim 13(3):579–595. https://doi.org/10.1175/1520-0442(2000)013%3C0579:IMEROI%3E2.0.CO;2

    Article  Google Scholar 

  • Krishnamurthy V, Sharma AS (2017) Predictability at intraseasonal time scale. Geophys Res Lett 44(16):8530–8537. https://doi.org/10.1002/2017GL074984

    Article  Google Scholar 

  • Krishnamurthy V, Shukla J (2007) Intraseasonal and seasonally persisting patterns of Indian monsoon rainfall. J Clim 20(1):3–20. https://doi.org/10.1175/JCLI3981.1

    Article  Google Scholar 

  • Krishnan R, Ramesh KV, Samala BK, Meyers G, Slingo JM, Fennessy MJ (2006) Indian Ocean-monsoon coupled interactions and impending monsoon droughts. Geophys Res Lett. https://doi.org/10.1029/2006GL025811

    Article  Google Scholar 

  • Krishnan R, Kumar V, Sugi M, Yoshimura J (2009) Internal feedbacks from monsoon–midlatitude interactions during droughts in the Indian summer monsoon. J Atmos Sci 66(3):553–578

    Article  Google Scholar 

  • Krishnan R, Sundaram S, Swapna P, Kumar V, Ayantika DC, Mujumdar M (2011) The crucial role of ocean–atmosphere coupling on the Indian monsoon anomalous response during dipole events. Clim Dyn 37(1–2):1–17

    Article  Google Scholar 

  • Krishnaswamy J, Vaidyanathan S, Rajagopalan B, Bonell M, Sankaran M, Bhalla RS, Badiger S (2015) Non-stationary and non-linear influence of ENSO and Indian Ocean Dipole on the variability of Indian monsoon rainfall and extreme rain events. Clim Dyn 45(1–2):175–184

    Article  Google Scholar 

  • Kucharski F, Abid MA., 2017. Interannual variability of the Indian monsoon and its link to ENSO. In Oxford Research Encyclopedia of Climate Science.

  • Kulkarni A, Sabade SS, Kripalani RH (2009) Spatial variability of intra-seasonal oscillations during extreme Indian monsoons. Int J Climatol 29(13):1945–1955

    Article  Google Scholar 

  • Kulkarni MA, Acharya N, Kar SC, Mohanty UC, Tippett MK, Robertson AW, Luo JJ, Yamagata T (2012) Probabilistic prediction of Indian summer monsoon rainfall using global climate models. Theoret Appl Climatol 107(3):441–450. https://doi.org/10.1007/s00704-011-0493-x

    Article  Google Scholar 

  • Kumar KK, Rajagopalan B, Cane MA (1999) On the weakening relationship between the Indian Monsoon and ENSO. Science 284(5423):2156–2159

    Article  Google Scholar 

  • Kumar OB, Rao SR, Ranganathan S, Raju SS (2010) Role of intra-seasonal oscillations on monsoon floods and droughts over India. Asia-Pac J Atmos Sci 46(1):21–28. https://doi.org/10.1007/s13143-010-0003-6.pdf

    Article  Google Scholar 

  • Lawrence DM, Webster PJ (2001) Interannual variations of the intraseasonal oscillation in the South Asian summer monsoon region. J Clim 14(13):2910–2922

    Article  Google Scholar 

  • Lawrence DM, Webster PJ (2002) The boreal summer intraseasonal oscillation: relationship between northward and eastward movement of convection. J Atmos Sci 59(9):1593–1606. https://doi.org/10.1175/1520-0469(2002)059%3c1593:TBSIOR%3e2.0.CO;2

    Article  Google Scholar 

  • Lee JY, Wang B, Wheeler MC, Fu X, Waliser DE, Kang IS (2013) Real-time multivariate indices for the boreal summer intraseasonal oscillation over the Asian summer monsoon region. Clim Dyn 40(1–2):493–509. https://doi.org/10.1007/s00382-012-1544-4.pdf

    Article  Google Scholar 

  • Levine RC, Turner AG (2012) Dependence of Indian monsoon rainfall on moisture fluxes across the Arabian Sea and the impact of coupled model sea surface temperature biases. Clim Dyn 38(11):2167–2190

    Article  Google Scholar 

  • Li J, Lu X (2020) SABER observations of gravity wave responses to the Madden-Julian oscillation from the stratosphere to the lower thermosphere in tropics and extratropics. Geophys Res Lett 47(23):014. https://doi.org/10.1029/2020GL091014

    Article  Google Scholar 

  • Li L, Zhai P, Chen Y, Ni Y (2016) Low-frequency oscillations of the East Asia-Pacific teleconnection pattern and their impacts on persistent heavy precipitation in the Yangtze-Huai River valley. J Meteorol Res 30(4):459–471. https://doi.org/10.1007/s13351-016-6024-z

    Article  Google Scholar 

  • Madden RA, Julian PR (1971) Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J Atmos Sci 28(5):702–708.

    Article  Google Scholar 

  • Madden RA, Julian PR (1972) Description of global-scale circulation cells in the tropics with a 40–50 day period. J Atmos Sci 29(6):1109–1123. https://doi.org/10.1175/1520-0469(1972)029%3c1109:DOGSCC%3e2.0.CO;2

    Article  Google Scholar 

  • Mahadevan A, Jaeger GS, Freilich M, Omand MM, Shroyer EL, Sengupta D (2016) Freshwater in the Bay of Bengal: its fate and role in air-sea heat exchange. Oceanography 29(2):72–81

    Article  Google Scholar 

  • Mao J, Chan JC (2005) Intraseasonal variability of the South China Sea summer monsoon. J Clim 18(13):2388–2402

    Article  Google Scholar 

  • Mishra AK, Singh VP (2010) A review of drought concepts. J Hydrol 391(1–2):202–216

    Article  Google Scholar 

  • Mishra V, Smoliak BV, Lettenmaier DP, Wallace JM (2012) A prominent pattern of year-to-year variability in Indian summer monsoon rainfall. Proc Natl Acad Sci 109(19):7213–7217

    Article  Google Scholar 

  • Neena JM, Waliser D, Jiang X (2017) Model performance metrics and process diagnostics for boreal summer intraseasonal variability. Clim Dyn 48(5–6):1661–1683

    Article  Google Scholar 

  • Pai DS, Sridhar L, Guhathakurta P, Hatwar HR (2011) District-wide drought climatology of the southwest monsoon season over India based on standardized precipitation index (SPI). Nat Hazards 59(3):1797–1813. https://doi.org/10.1007/s11069-011-9867-8.pdf

    Article  Google Scholar 

  • Pai DS, Rajeevan M, Sreejith OP, Mukhopadhyay B, Satbha NS (2014) Development of a new high spatial resolution (0.25× 0.25) long period (1901–2010) daily gridded rainfall data set over India and its comparison with existing data sets over the region. Mausam 65(1):1–18

    Article  Google Scholar 

  • Pai DS, Sridhar L, Rajeevan M, Sreejith OP, Satbhai NS, Mukhopadhyay B (2014) Development of a new high spatial resolution (0.25 × 0.25) long period (1901–2010) daily gridded rainfall data set over India and its comparison with existing data sets over the region. Mausam 65(1):1–8

    Article  Google Scholar 

  • Pai DS, Guhathakurta P, Kulkarni A, Rajeevan MN (2017) Variability of meteorological droughts over India. Observed climate variability and change over the Indian Region. Springer, Singapore, pp 73–87. https://doi.org/10.1007/978-981-10-2531-0_5

    Chapter  Google Scholar 

  • Pandey P, Dwivedi S, Goswami BN, Kucharski F (2020) A new perspective on ENSO-Indian summer monsoon rainfall relationship in a warming environment. Clim Dyn 55(11):3307–3326

    Article  Google Scholar 

  • Paramita M, Sutapa C, Debanjana D, Das A (2020) Impact of vertical structure of the atmosphere on the variability in summer monsoon rainfall over Gangetic West Bengal, India. Theor Appl Climatol 140(3–4):1359–1371

    Google Scholar 

  • Pathak R, Sahany S, Mishra SK, Dash SK (2019) Precipitation biases in CMIP5 models over the south Asian region. Sci rep 9(1):1–13

    Article  Google Scholar 

  • Patil C, Prabhakaran T, Ray KS, Karipot A (2019) Revisiting moisture transport during the Indian summer monsoon using the moisture river concept. Pure Appl Geophys 176(11):5107–5123

    Article  Google Scholar 

  • Peng J, Dadson S, Leng G, Duan Z, Jagdhuber T, Guo W, Ludwig R (2019) The impact of the Madden-Julian Oscillation on hydrological extremes. J Hydrol 571:142–149

    Article  Google Scholar 

  • Pillai PA, Chowdary JS (2016) Indian summer monsoon intra-seasonal oscillation associated with the develo** and decaying phase of El Niño. Int J Climatol 36(4):1846–1862. https://doi.org/10.1002/joc.4464

    Article  Google Scholar 

  • Power S, Casey T, Folland C, Colman A, Mehta V (1999) Inter-decadal modulation of the impact of ENSO on Australia. Clim Dyn 15(5):319–324

    Article  Google Scholar 

  • Preethi B, Mujumdar M, Kripalani RH, Prabhu A, Krishnan R (2017a) Recent trends and tele-connections among South and East Asian summer monsoons in a warming environment. Clim Dyn 48(7–8):2489–2505. https://doi.org/10.1007/s00382-016-3218-0.pdf

    Article  Google Scholar 

  • Preethi B, Mujumdar M, Prabhu A, Kripalani R (2017b) Variability and teleconnections of South and East Asian summer monsoons in present and future projections of CMIP5 climate models. Asia-Pac J Atmos Sci 53(2):305–325. https://doi.org/10.1007/s13143-017-0034-3

    Article  Google Scholar 

  • Preethi B, Ramya R, Patwardhan SK, Mujumdar M, Kripalani RH (2019) Variability of Indian summer monsoon droughts in CMIP5 climate models. Clim Dyn 53(3):1937–1962. https://doi.org/10.1007/s00382-019-04752-x

    Article  Google Scholar 

  • Rajeevan M, Bhate J, Kale JD, Lal B (2006) High resolution daily gridded rainfall data for the Indian region: analysis of break and active monsoon spells. Curr Sci 91:296–306

    Google Scholar 

  • Rajeevan M, Bhate J, Jaswal AK (2008) Analysis of variability and trends of extreme rainfall events over India using 104 years of gridded daily rainfall data. Geophys Res Lett 35(18):18707

    Article  Google Scholar 

  • Rajeevan M, Gadgil S, Bhate J (2010) Active and break spells of the Indian summer monsoon. J Earth Syst Sci 119(3):229–247. https://doi.org/10.1007/s12040-010-0019-4.pdf

    Article  Google Scholar 

  • Rajendran K, Kitoh A (2006) Modulation of tropical intraseasonal oscillations by ocean–atmosphere coupling. J Clim 19(3):366–391

    Article  Google Scholar 

  • Rajendran K, Surendran S, Varghese SJ, Sathyanath A (2021) Simulation of Indian summer monsoon rainfall, interannual variability and teleconnections: evaluation of CMIP6 models. Clim Dyn. https://doi.org/10.1007/s00382-021-06027-w

    Article  Google Scholar 

  • Rasmusson EM, Wallace JM (1983) Meteorological aspects of the El Nino/southern oscillation. Science 222(4629):1195–1202. https://doi.org/10.1126/science.222.4629.1195

    Article  Google Scholar 

  • Ratnam JV, Giorgi F, Kaginalkar A, Cozzini S (2009) Simulation of the Indian monsoon using the RegCM3–ROMS regional coupled model. Clim Dyn 33(1):119–139. https://doi.org/10.1007/s00382-008-0433-3.pdf

    Article  Google Scholar 

  • Rienecker MM, Suarez MJ, Gelaro R, Todling R, Bacmeister J, Liu E, Bosilovich MG, Schubert SD, Takacs L, Kim GK, Bloom S (2011) MERRA: NASA’s modern-era retrospective analysis for research and applications. J Clim 24(14):3624–3648. https://doi.org/10.1175/JCLI-D-11-00015.1

    Article  Google Scholar 

  • Roxy M, Tanimoto Y (2007) Role of SST over the Indian Ocean in influencing the intraseasonal variability of the Indian summer monsoon. J Meteorol Soc Jpn Ser II 85(3):349–358. https://doi.org/10.2151/jmsj.85.349

    Article  Google Scholar 

  • Roxy M, Tanimoto Y, Preethi B, Terray P, Krishnan R (2013) Intraseasonal SST-precipitation relationship and its spatial variability over the tropical summer monsoon region. Clim Dyn 41(1):45–61. https://doi.org/10.1007/s00382-012-1547-1.pdf

    Article  Google Scholar 

  • Roxy MK, Dasgupta P, McPhaden MJ, Suematsu T, Zhang C, Kim D (2019) Twofold expansion of the Indo-Pacific warm pool warps the MJO life cycle. Nature 575(7784):647–651. https://doi.org/10.1038/s41586-019-1764-4

    Article  Google Scholar 

  • Sabeerali CT, Ramu Dandi A, Dhakate A, Salunke K, Mahapatra S, Rao SA (2013) Simulation of boreal summer intraseasonal oscillations in the latest CMIP5 coupled GCMs. J Geophys Res Atmos 118(10):4401–4420. https://doi.org/10.1002/jgrd.50403

    Article  Google Scholar 

  • Saha S, Moorthi S, Pan HL, Wu X, Wang J, Nadiga S, Tripp P, Kistler R, Woollen J, Behringer D, Liu H (2010) The NCEP climate forecast system reanalysis. Bull Am Meteor Soc 91(8):1015–1058

    Article  Google Scholar 

  • Saha SK, Pokhrel S, Chaudhari HS, Dhakate A, Shewale S, Sabeerali CT, Salunke K, Hazra A, Mahapatra S, Rao AS (2014) Improved simulation of Indian summer monsoon in latest NCEP climate forecast system free run. Int J Climatol 34(5):1628–1641. https://doi.org/10.1002/joc.3791

    Article  Google Scholar 

  • Saha SK, Hazra A, Pokhrel S, Chaudhari HS, Sujith K, Rai A, Rahaman H, Goswami BN (2019) Unraveling the mystery of Indian summer monsoon prediction: improved estimate of predictability limit. J Geophys Res Atmos 124(4):1962–1974. https://doi.org/10.1029/2018JD030082

    Article  Google Scholar 

  • Saith N, Slingo J (2006) The role of the Madden–Julian Oscillation in the El Nino and Indian drought of 2002. Int J Climatol 26(10):1361–1378

    Article  Google Scholar 

  • Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401(6751):360–363

    Article  Google Scholar 

  • Seetha CJ, Varikoden H, Babu CA, Kuttippurath J (2020) Significant changes in the ENSO-monsoon relationship and associated circulation features on multidecadal timescale. Clim Dyn 54(3):1491–1506

    Article  Google Scholar 

  • Sengupta D, Goswami BN, Senan R (2001) Coherent intraseasonal oscillations of ocean and atmosphere during the Asian summer monsoon. Geophys Res Lett 28(21):4127–4130. https://doi.org/10.1029/2001GL013587

    Article  Google Scholar 

  • Sharmila S, Joseph S, Sahai AK, Abhilash S, Chattopadhyay R (2014) Future projection of Indian summer monsoon variability under climate change scenario: an assessment from CMIP5 climate models. Global Planet Change 124:62–78

    Article  Google Scholar 

  • Shenoi SSC, Shankar D, Shetye SR (2002) Differences in heat budgets of the near-surface Arabian Sea and Bay of Bengal: implications for the summer monsoon. J Geophys Res Oceans 107(C6):5–1

    Article  Google Scholar 

  • Shin CS, Huang B, Zhu J, Marx L, Kinter JL (2019) Improved seasonal predictive skill and enhanced predictability of the Asian summer monsoon rainfall following ENSO events in NCEP CFSv2 hindcasts. Clim Dyn 52(5):3079–3098. https://doi.org/10.1007/s00382-018-4316-y

    Article  Google Scholar 

  • Shinoda T, Hendon HH, Glick J (1998) Intraseasonal variability of surface fluxes and sea surface temperature in the tropical western Pacific and Indian Oceans. J Clim 11(7):1685–1702

    Article  Google Scholar 

  • Shrivastava S, Kar SC, Sharma AR (2017) Intraseasonal variability of summer monsoon rainfall and droughts over central India. Pure Appl. Geophys 174(4):1827

    Article  Google Scholar 

  • Shukla RP (2014) The dominant intraseasonal mode of intraseasonal South Asian summer monsoon. J Geophys Res Atmos 119(2):635–651. https://doi.org/10.1002/2013JD020335

    Article  Google Scholar 

  • Shukla RP, Huang B (2016) Interannual variability of the Indian summer monsoon associated with the air–sea feedback in the northern Indian Ocean. Clim Dyn 46(5–6):1977–1990. https://doi.org/10.1007/s00382-015-2687-x.pdf

    Article  Google Scholar 

  • Shukla RP, Shin CS (2020) Distinguishing spread among ensemble members between drought and flood Indian summer monsoon years in the Past 58 Years (1958–2015) reforecasts. Geophys Res Lett. https://doi.org/10.1029/2019GL086586

    Article  Google Scholar 

  • Sikka DR (1978) Some aspects of the life history, structure and movement of monsoon depressions. Monsoon dynamics. Birkhäuser, Basel, pp 1501–1529. https://doi.org/10.1007/978-3-0348-5759-8_21

    Chapter  Google Scholar 

  • Sikka DR (1980) Some aspects of the large-scale fluctuations of summer monsoon rainfall over India in relation to fluctuations in planetary and regional scale circulation parameters. Proc Indian Acad Sci Earth Planet Sci 89:179–195

    Article  Google Scholar 

  • Sikka DR, Ratna SB (2011) On improving the ability of a high-resolution atmospheric general circulation model for dynamical seasonal prediction of the extreme seasons of the Indian summer monsoon. Mausam 62(3):339–360

    Article  Google Scholar 

  • Singh C, Dasgupta P (2017) Unraveling the spatio-temporal structure of the atmospheric and oceanic intra-seasonal oscillations during the contrasting monsoon seasons. Atmos Res 192:48–57

    Article  Google Scholar 

  • Singh SV, Kripalani RH (1985) The south to north progression of rainfall anomalies across India during the summer monsoon season. Pure Appl Geophys 123(4):624–637

    Article  Google Scholar 

  • Sobel AH, Nilsson J, Polvani LM (2001) The weak temperature gradient approximation and balanced tropical moisture waves. J Atmos Sci 58(23):3650–3665

    Article  Google Scholar 

  • Song F, Zhou T (2014) The climatology and interannual variability of East Asian summer monsoon in CMIP5 coupled models: does air–sea coupling improve the simulations? J Clim 27(23):8761–8777. https://doi.org/10.1175/JCLI-D-14-00396.1

    Article  Google Scholar 

  • Srivastava A, Rao SA, Rao DN, George G, Pradhan M (2017) Structure, characteristics, and simulation of monsoon low-pressure systems in CFS v2 coupled model. J Geophys Res Oceans 122(8):6394–6415. https://doi.org/10.1002/2016JC012322

    Article  Google Scholar 

  • Srivastava G, Chakraborty A, Nanjundiah RS (2019) Multidecadal see-saw of the impact of ENSO on Indian and West African summer monsoon rainfall. Clim Dyn 52(11):6633–6649

    Article  Google Scholar 

  • Straub KH, Kiladis GN (2003) Interactions between the boreal summer intraseasonal oscillation and higher-frequency tropical wave activity. Mon Weather Rev 131(5):945–960. https://doi.org/10.1175/1520-0493(2003)131%3c0945:IBTBSI%3e2.0.CO;2

    Article  Google Scholar 

  • Suhas E, Neena JM, Goswami BN (2011) Interannual variability of Indian summer monsoon arising from interactions between seasonal mean and intraseasonal oscillations. J Atmos Sci 69(6):1761–1774. https://doi.org/10.1175/JAS-D-11-0211.1

    Article  Google Scholar 

  • Suhas E, Neena JM, Goswami BN (2013) An Indian monsoon intraseasonal oscillations (MISO) index for real time monitoring and forecast verification. Clim Dyn 40(11–12):2605–2616. https://doi.org/10.1007/s00382-012-1462-5.pdf

    Article  Google Scholar 

  • Sun Q, Miao C, Duan Q, Ashouri H, Sorooshian S, Hsu KL (2018) A review of global precipitation data sets: data sources, estimation, and intercomparisons. Rev Geophys 56(1):79–107. https://doi.org/10.1002/2017RG000574

    Article  Google Scholar 

  • Surendran S, Gadgil S, Francis PA, Rajeevan M (2015) Prediction of Indian rainfall during the summer monsoon season on the basis of links with equatorial Pacific and Indian Ocean climate indices. Environ Res Lett 10(9):094004

    Article  Google Scholar 

  • Swann AL, Hoffman FM, Koven CD, Randerson JT (2016) Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity. Proc Natl Acad Sci 113(36):10019–10024. https://doi.org/10.1073/pnas.1604581113

    Article  Google Scholar 

  • Swapna P, RameshKumar MR (2002) Role of low level flow on the summer monsoon rainfall over the Indian subcontinent during two contrasting monsoon years. J Ind Geophys Union 6(3):123–137

    Google Scholar 

  • Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys ResAtmos 106(D7):7183–7192

    Article  Google Scholar 

  • Thadathil P, Gopalakrishna VV, Muraleedharan PM, Reddy GV, Araligidad N, Shenoy S (2002) Surface layer temperature inversion in the Bay of Bengal. Deep Sea Res Part I 49(10):1801–1818

    Article  Google Scholar 

  • Turner AG, Annamalai H (2012) Climate change and the South Asian summer monsoon. Nat Clim Chang 2(8):587–595

    Article  Google Scholar 

  • Varikoden H, Preethi B (2013) Wet and dry years of Indian summer monsoon and its relation with Indo-Pacific Sea surface temperatures. Int J Climatol 33(7):1761–1771

    Article  Google Scholar 

  • Waliser DE (2006) Intraseasonal variability. The Asian monsoon. Springer, Heidelberg, pp 203–257

    Chapter  Google Scholar 

  • Waliser DE, ** K, Kang IS, Stern WF, Schubert SD, Wu MLC, Lau KM, Lee MI, Krishnamurthy V, Kitoh A, Meehl GA (2003) AGCM simulations of intraseasonal variability associated with the Asian summer monsoon. Clim Dyn 21(5):423–446. https://doi.org/10.1007/s00382-003-0337-1

    Article  Google Scholar 

  • Wang B (2005) Theory. Intraseasonal variability in the atmosphere-ocean climate system. Springer, Heidelberg, pp 307–360

    Chapter  Google Scholar 

  • Wang B (2006) The Asian monsoon. Springer, Heidelberg

    Book  Google Scholar 

  • Wang B, Li T (2004) East Asian monsoon-ENSO interactions. East Asian monsoon. World Scientific, London, pp 177–212. https://doi.org/10.1142/9789812701411_0005

    Chapter  Google Scholar 

  • Wang S, Sobel AH, Tippett MK, Vitart F (2019) Prediction and predictability of tropical intraseasonal convection: seasonal dependence and the Maritime Continent prediction barrier. Clim Dyn 52(9):6015–6031

    Article  Google Scholar 

  • Webster PJ, Magana VO, Palmer TN, Shukla J, Tomas RA, Yanai MU, Yasunari T (1998) Monsoons: processes, predictability, and the prospects for prediction. J Geophys Res Oceans 103(C7):14451–14510. https://doi.org/10.1029/97JC02719

    Article  Google Scholar 

  • **n X, Wu T, Zhang J, Yao J, Fang Y (2020) Comparison of CMIP6 and CMIP5 simulations of precipitation in China and the East Asian summer monsoon. Int J Climatol 40(15):6423–6440. https://doi.org/10.1002/joc.6590

    Article  Google Scholar 

  • Yadav RK (2017) On the relationship between east equatorial Atlantic SST and ISM through Eurasian wave. Clim Dyn 48(1–2):281–295

    Article  Google Scholar 

  • Yadav RK, Srinivas G, Chowdary JS (2018a) Atlantic Niño modulation of the Indian summer monsoon through Asian jet. NPJ Clim Atmos Sci 1(1):1–11

    Article  Google Scholar 

  • Yadav RK, Srinivas G, Chowdary JS (2018b) Atlantic Niño modulation of Indian summer monsoon through Asian Jet. NPJ Clim Atmos Sci 1:1–23

    Article  Google Scholar 

  • Yamaura T, Kajikawa Y (2017) Decadal change in the boreal summer intraseasonal oscillation. Clim Dyn 48(9–10):3003–3014

    Article  Google Scholar 

  • Yang X, Huang P (2021) Restored relationship between ENSO and Indian summer monsoon rainfall around 1999/2000. Innovation 2(2):100102

    Google Scholar 

  • Yang B, Zhang Y, Qian Y, Song F, Leung LR, Wu P, Guo Z, Lu Y, Huang A (2019) Better monsoon precipitation in coupled climate models due to bias compensation. NPJ Clim Atmos Sci 2(1):1–8. https://doi.org/10.1038/s41612-019-0100-x

    Article  Google Scholar 

  • Yun KS, Timmermann A (2018) Decadal monsoon-ENSO relationships reexamined. Geophys Res Lett 45(4):2014–2021. https://doi.org/10.1002/2017GL076912

    Article  Google Scholar 

  • Zhao T, Dai A (2017) Uncertainties in historical changes and future projections of drought. Part II: model-simulated historical and future drought changes. Clim Change 144(3):535–548. https://doi.org/10.1007/s10584-016-1742-x

    Article  Google Scholar 

  • Zheng B, Huang Y (2019) Mechanisms of northward-propagating intraseasonal oscillation over the South China Sea during the pre-monsoon period. J Clim 32(11):3297–3311. https://doi.org/10.1175/JCLI-D-18-0391.1

    Article  Google Scholar 

  • Zhou W, Chan JC (2005) Intraseasonal oscillations and the South China Sea summer monsoon onset. Int J Climatol 25(12):1585–1609. https://doi.org/10.1002/joc.1209

    Article  Google Scholar 

  • Zhou L, Murtugudde R (2014) Impact of northward-propagating intraseasonal variability on the onset of Indian summer monsoon. J Clim 27(1):126–139. https://doi.org/10.1175/JCLI-D-13-00214.1

    Article  Google Scholar 

  • Zhou W, **e SP (2017) Intermodel spread of the double-ITCZ bias in coupled GCMs tied to land surface temperature in AMIP GCMs. Geophys Res Lett 44(15):7975–7984. https://doi.org/10.1002/2017GL074377

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge the Science and Engineering Research Board (SERB), Government of India (Grant Ref: ECR/2016/001896). Authors also want to acknowledge the World Climate Research programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modelling groups for producing and making available their model output.

Funding

This research is supported by the Science and Engineering Research Board (Grants Number ECR/2016/001896).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naresh Krishna Vissa.

Ethics declarations

Conflict of interest

Corresponding author declares on behalf of all the authors, there is no competing interest that influence the outcome reported in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4545 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konda, G., Vissa, N.K. Evaluation of CMIP6 models for simulations of surplus/deficit summer monsoon conditions over India. Clim Dyn 60, 1023–1042 (2023). https://doi.org/10.1007/s00382-022-06367-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-022-06367-1

Keywords

Navigation