Log in

Extreme storms in Southwest Asia (Northern Arabian Peninsula) under current and future climates

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Precipitation extremes will generally intensify in response to a warming climate. This robust fingerprint of climate change is of particular concern, resulting in heavy rainfall and devastating floods. Often this intensification is explained as a consequence of the Clausius–Clapeyron law in a warmer world, under constant relative humidity. Here, based on an ensemble of CMIP5 global climate models and high-resolution regional climate simulations, we take the example of Southwest Asia, where extreme storms will intensify beyond the Clausius- Clapeyron scaling, and propose an additional novel mechanism for this region: the unique increase in atmospheric relative humidity over the Arabian Sea and associated deep northward penetration of moisture. This increase in humidity is dictated by changes in circulation over the Indian Ocean. Our proposed mechanism is consistent with the recent, most extreme storm ever observed in the region. Our findings advance a new understanding of natural climate variability in this region, with substantial implications for climate change adaptation of the region’s critical infrastructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Allen MR, Ingram WJ (2002) Constraints on future changes in climate and the hydrologic cycle. Nature 419(6903):224. https://doi.org/10.1038/nature01092

    Article  Google Scholar 

  • Almazroui M, Islam MN, Athar H, Jones PD, Rahman MA (2012) Recent climate change in the Arabian Peninsula: annual rainfall and temperature analysis of Saudi Arabia for 1978–2009. Int J Climatol 32:953–966

    Article  Google Scholar 

  • Almazroui M, Kamil S, Ammar K, Keay K, Alamoudi AO (2016) Climatology of the 500-hPa Mediterranean storms associated with Saudi Arabia wet season precipitation. Clim Dyn 47:3029–3042. https://doi.org/10.1007/s00382-016-3011-0

    Article  Google Scholar 

  • Al-Nassar AR, Pelegrí JL, Sangrà P et al (2020) Cut-off low systems over Iraq: contribution to annual precipitation and synoptic analysis of extreme events. Int J Climatol 40(2):908–926. https://doi.org/10.1002/joc.6247

    Article  Google Scholar 

  • Atif RM, Almazroui M, Saeed S et al (2020) Extreme precipitation events over Saudi Arabia during the wet season and their associated teleconnections. Atmos Res 231:104655. https://doi.org/10.1016/j.atmosres.2019.104655

    Article  Google Scholar 

  • Cai W, Zheng X-T, Weller E, Collins M, Cowan T, Lengaigne W, Yu W-D, Yamagata T (2013) Projected response of the Indian Ocean Dipole to greenhouse warming. Nat Geosci 6:999–1007

    Article  Google Scholar 

  • Cai W, Santoso A, Wang G, Weller E, Wu L, Ashok K et al (2014) Increased frequency of extreme Indian Ocean Dipole events due to greenhouse warming. Nature 510:254–258

    Article  Google Scholar 

  • De Vries AJ, Tyrlis E, Edry D, Krichak SO, Steil B, Lelieveld J (2013) Extreme precipitation events in the Middle East: dynamics of the active Red Sea trough. J Geophys Res Atmos 118:7087–7108

    Article  Google Scholar 

  • De Vries AJ, Feldstein SB, Riemer M et al (2016) Dynamics of tropical–extratropical interactions and extreme precipitation events in Saudi Arabia in autumn, winter and spring. Q J R Meteorol Soc 142(697):1862–1880

    Article  Google Scholar 

  • De Vries AJ, Ouwersloot HG, Feldstein SB et al (2018) identification of tropical-extratropical interactions and extreme precipitation events in the Middle East based on potential vorticity and moisture transport. J Geophys Res Atmos 123(2):861–881. https://doi.org/10.1002/2017JD027587

    Article  Google Scholar 

  • Gianotti RL, Eltahir EAB (2014a) Regional climate modeling over the Maritime Continent. Part I: New parameterization for convective cloud fraction. J Clim 27:1488–1503

    Article  Google Scholar 

  • Gianotti RL, Eltahir EAB (2014b) Regional climate modeling over the Maritime Continent. Part II: New parameterization for autoconversion of convective rainfall. J Clim 27:1504–1523

    Article  Google Scholar 

  • Gianotti RL, Zhang DF, Eltahir EAB (2012) Assessment of the regional climate model version 3 over the maritime continent using different cumulus parameterization and land surface schemes. J Clim 25:638–656. https://doi.org/10.1175/jcli-d-11-00025.1

    Article  Google Scholar 

  • Gill AE (1980) Some simple solutions for heat-induced tropical circulation. Q J R Meteor Soc 106:447–462

    Article  Google Scholar 

  • Holton JR (1992) An introduction to dynamic meteorology, 3rd edn. Academic Press, San Diego

    Google Scholar 

  • Hoskins B, Berrisford P (1988) A potential vorticity perspective of the storm of 15–16 October 1987. Weather 43(3):122–129

    Article  Google Scholar 

  • Huffman G et al (2007) The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J Hydrometeorol 8(1):38–55. https://doi.org/10.1175/JHM560.1

    Article  Google Scholar 

  • Im ES, Eltahir EAB (2018a) Simulations of the observed ‘jump’ in the West African monsoon and its underlying dynamics using the MIT regional climate model. Int J Climatol 38:841–852. https://doi.org/10.1002/joc.5214

    Article  Google Scholar 

  • Im ES, Eltahir EAB (2018b) Simulation of the diurnal variation of rainfall over the western Maritime Continent using a regional climate model. Clim Dyn 51:73–88. https://doi.org/10.1007/s00382-017-3907-3

    Article  Google Scholar 

  • IPCC (2014) Climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, **a Y, Bex V, Midgley PM (eds) Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Kharin VV, Zwiers FW, Zhang X, Hegerl GC (2007) Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J Clim 20:1419–1444

    Article  Google Scholar 

  • Kumar KN, Ouarda TBMJ (2014) Precipitation variability over UAE and global SST teleconnections. J Geophys Res Atmos 119:10313–10322. https://doi.org/10.1002/2014JD021724

    Article  Google Scholar 

  • Kumar KN, Entekhabi D, Molini A (2015) Hydrological extremes in hyperarid regions: a diagnostic characterization of intense precipitation over the Central Arabian Peninsula. J Geophys Res Atmos 120:1637–1650. https://doi.org/10.1002/2014JD022341

    Article  Google Scholar 

  • Kumar KN, Ouarda TBMJ, Sandeep S, Ajayamohan RS (2016) Wintertime precipitation variability over the Arabian Peninsula and its relationship with ENSO in the CAM4 simulations. Clim Dyn 47:1–12

    Article  Google Scholar 

  • Lau WK, Kim KM (2015) Robust Hadley circulation changes and increasing global dryness due to CO2 warming from CMIP5 model projections. Proc Natl Acad Sci 112(12):3630–3635

    Article  Google Scholar 

  • Marcella MP, Eltahir EAB (2008) The hydroclimatology of Kuwait: Explaining the variability of rainfall at seasonal and interannual time scales. J Hydrometeorol 9:1095–1105. https://doi.org/10.1175/2008JHM952.1

    Article  Google Scholar 

  • Masato G, Hoskins BJ, Woollings T (2013) Winter and summer Northern hemisphere blocking in CMIP5 models. J Clim 26:7044–7059. https://doi.org/10.1175/JCLI-D-12-00466.1

    Article  Google Scholar 

  • Min SK, Zhang X, Zwiers FW, Hegerl GC (2011) Human contribution to more-intense precipitation extremes. Nature 470:378–381

    Article  Google Scholar 

  • Nie J, Sobel AH, Shaevitz DA, Wang S (2018) Dynamic amplification of extreme precipitation sensitivity. Proc Natl Acad Sci USA 115(38):9467–9472. https://doi.org/10.1073/pnas.1800357115

    Article  Google Scholar 

  • Nie J, Dai P, Sobel AH (2020) Dry and moist dynamics shape regional patterns of extreme precipitation sensitivity. Proc Natl Acad Sci 117(16):8757–8763

    Article  Google Scholar 

  • O’Gorman PA (2015) Precipitation extremes under climate change. Curr Clim Change Rep 1:49–59

    Article  Google Scholar 

  • O’Gorman PA, Schneider T (2009) The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. Proc Natl Acad Sci 106:14773–14777

    Article  Google Scholar 

  • Pal JS, Eltahir EAB (2016) Future temperature in southwest Asia projected to exceed a threshold for human adaptability. Nat Clim Change 6:197–200

    Article  Google Scholar 

  • Pal JS, Giorgi F, Bi X et al (2007) Regional climate modeling for the develo** world: the ICTP RegCM3 and RegCNET. Bull Am Meteorol Soc 88(9):1395–1409

    Article  Google Scholar 

  • Peleg N, Bartov M, Morin E (2015) CMIP5-predicted climate shifts over the East Mediterranean: implications for the transition region between Mediterranean and semi-arid climates. Int J Climatol 35(8):2144–2153

    Article  Google Scholar 

  • Pfahl S, O’Gorman PA, Fischer EM (2017) Understanding the regional pattern of projected future changes in extreme precipitation. Nat Clim Change 7:423–427. https://doi.org/10.1038/nclimate3287

    Article  Google Scholar 

  • Poli P, Hersbach H, Dee DP, Berrisford P, Simmons AJ, Vitart F, Laloyaux P, Tan DG, Peubey C, Thépaut JN, Trémolet Y (2016) ERA-20C: an atmospheric reanalysis of the twentieth century. J Clim 29(11):4083–4097

    Article  Google Scholar 

  • Reynolds RW, Smith TM, Liu C, Chelton DB, Casey KS, Schlax MG (2007) Daily high-resolution-blended analyses for sea surface temperature. J Clim 20:5473–5496

    Article  Google Scholar 

  • Riahi K, Rao S, Krey V, Cho C, Chirkov V, Fischer G, Rafaj P (2011) RCP 8.5—a scenario of comparatively high greenhouse gas emissions. Clim Change 109(1–2):33. https://doi.org/10.1007/s10584-011-0149-y

    Article  Google Scholar 

  • Roxy MK, Ritika K, Terray P, Masson S (2014) The curious case of Indian Ocean warming. J Clim 27(22):8501–8509. https://doi.org/10.1175/JCLI-D-14-00471.1

    Article  Google Scholar 

  • Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401:360–363

    Google Scholar 

  • Salimi M, Al-Ghamdi SG (2020) Climate change impacts on critical urban infrastructure and urban resiliency strategies for the Middle East. Sustain Cities Soc 54:101948

    Article  Google Scholar 

  • Sandeep S, Ajayamohan RS (2018) Modulation of winter precipitation dynamics over the Arabian Gulf by ENSO. J Geophys Res Atmos 123(1):198–210

    Article  Google Scholar 

  • Seidel DJ, Fu Q, Randel WJ, Reichler TJ (2008) Widening of the tropical belt in a changing climate. Nat Geosci 1(1):21–24

    Article  Google Scholar 

  • Sherwood SC, Meyer CL (2006) The general circulation and robust relative humidity. J Clim 19:6278–6290

    Article  Google Scholar 

  • Sherwood SC, Ingram W, Tsushima Y, Satoh M, Roberts M, Vidale PL, O’Gorman PA (2010) Relative humidity changes in a warmer climate. J Geophys Res Atmos. https://doi.org/10.1029/2009JD012585

    Article  Google Scholar 

  • Sugiyama M, Shiogama H, Emori S (2010) Precipitation extreme changes exceeding moisture content increases in MIROC and IPCC climate models. Proc Natl Acad Sci USA 107:571–575. https://doi.org/10.1073/pnas.0903186107

    Article  Google Scholar 

  • Tabari H, Willems P (2018) Seasonally varying footprint of climate change on precipitation in the Middle East. Sci Rep 8:4435. https://doi.org/10.1038/s41598-018-22795-8

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experimental design. Bull Am Meteorol Soc 93:485–498. https://doi.org/10.1175/BAMS-D-00094.1

    Article  Google Scholar 

  • Trenberth KE (1998) Atmospheric moisture residence times and cycling: Implications for rainfall rates with climate change. Clim Change 39:667–694

    Article  Google Scholar 

  • Trenberth KE (1999) Conceptual framework for changes of extremes of the hydrological cycle with climate change. Clim Change 42:327–339

    Article  Google Scholar 

  • Uppala S, Dee D, Kobayashi S, Berrisford P, Simmons A (2008) Towards a climate data assimilation system: status update of ERA-Interim. ECMWF Newslett 115:12–18

    Google Scholar 

  • Westra S, Alexander LV, Zwiers FW (2013) Global increasing trends in annual maximum daily precipitation. J Clim 26(11):3904–3918

    Article  Google Scholar 

  • Winter JM, Eltahir EAB (2012) Modeling the hydroclimatology of the midwestern United States. Part 2: Future climate. Clim Dyn 38:573–593. https://doi.org/10.1007/s00382-011-1183-1

    Article  Google Scholar 

  • Winter JM, Pal JS, Eltahir EAB (2009) Coupling of integrated biosphere simulator to regional climate model version 3. J Clim 22:2743–2756

    Article  Google Scholar 

  • Yin JH (2005) A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys Res Lett 32:L18701. https://doi.org/10.1029/2005GL023684

    Article  Google Scholar 

  • Zheng X-T, **e S-P, Du Y, Liu L, Huang G, Liu Q-Y (2013) Indian Ocean Dipole response to global warming in the CMIP5 multimodel ensemble. J Clim 26:6067–6080

    Article  Google Scholar 

Download references

Acknowledgements

Research performed under Research Collaboration Agreement between Kuwait University and Massachusetts Institute of Technology (MIT), and funded by Kuwait Foundation for the advancement of science under project code: P216-45EV01. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups for producing and making available their model output.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Tuel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4781 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuel, A., Choi, YW., AlRukaibi, D. et al. Extreme storms in Southwest Asia (Northern Arabian Peninsula) under current and future climates. Clim Dyn 58, 1509–1524 (2022). https://doi.org/10.1007/s00382-021-05975-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-021-05975-7

Keywords

Navigation