Log in

Electroencephalogram and heart rate variability features as predictors of responsiveness to vagus nerve stimulation in patients with epilepsy: a systematic review

  • Review Article
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Introduction

Vagus nerve stimulation (VNS) is a mainstay treatment in people with medically refractive epilepsy with a growing interest to identify biomarkers that are predictive of VNS efficacy. In this review, we looked at electroencephalography (EEG) and heart rate variability (HRV) parameters as potential biomarkers.

Methodology

A comprehensive search of several databases limited to the English language and excluding animal studies was conducted. Data was collected from studies that specifically reviewed preoperative EEG and HRV characteristics as predictive factors of VNS outcomes.

Results

Ten out of 1078 collected studies were included in this review, of which EEG characteristics were reported in seven studies; HRV parameters were reported in two studies, and one study reported both. For EEG, studies reported a lower global rate of synchronization in alpha, delta, and gamma waves as predictors of the VNS response. The P300 wave, an evoked response on EEG, had conflicting results. Two studies reported high P300 wave amplitudes in nonresponders and low amplitudes in responders, whereas another study reported high P300 wave amplitudes in responders. For HRV, one study reported high-frequency power as the only parameter to be significantly lower in responders. In contrast, two studies from the same authors showed that HRV parameters were not different between responders and nonresponders.

Conclusion

HRV parameters and EEG characteristics including focal seizures and P300 wave have been reported as potential biomarkers for VNS outcomes in people with medically refractive epilepsy. However, the contradictory findings imply a need for validation through clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Morris GL, Gloss D, Buchhalter J, Mack KJ, Nickels K, Harden C (2013) Evidence-based guideline update: vagus nerve stimulation for the treatment of epilepsy: Report of the guideline development subcommittee of the american academy of neurology. Neurology 81(16):1453–1459. https://doi.org/10.1212/WNL.0b013e3182a393d1

    Article  PubMed  PubMed Central  Google Scholar 

  2. Tyler R, Cacace A, Stocking C et al (2017) Vagus nerve stimulation paired with tones for the treatment of tinnitus: a prospective randomized double-blind controlled pilot study in humans. Sci Rep 7(1). https://doi.org/10.1038/s41598-017-12178-w

  3. de Ferrari GM, Stolen C, Tuinenburg AE et al (2017) Long-term vagal stimulation for heart failure: eighteen month results from the NEural Cardiac TherApy foR Heart Failure (NECTAR-HF) trial. Int J Cardiol 244:229–234. https://doi.org/10.1016/j.ijcard.2017.06.036

    Article  PubMed  Google Scholar 

  4. Ng FL, Saxena M, Mahfoud F, Pathak A, Lobo MD (2016) Device-based therapy for hypertension. Curr Hypertens Rep 18(8). https://doi.org/10.1007/s11906-016-0670-5

  5. Koopman FA, Chavan SS, Miljko S et al (2016) Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis. Proc Natl Acad Sci USA 113(29):8284–8289. https://doi.org/10.1073/pnas.1605635113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schlaepfer TE, Frick C, Zobel A et al (2008) Vagus nerve stimulation for depression: efficacy and safety in a European study. Psychol Med 38(5):651–661. https://doi.org/10.1017/S0033291707001924

    Article  CAS  PubMed  Google Scholar 

  7. Yamamoto T (2015) Vagus nerve stimulation therapy: indications, programing, and outcomes. Neurol Med Chir 55(5):407–415. https://doi.org/10.2176/nmc.ra.2014-0405

    Article  Google Scholar 

  8. Mithani K, Mikhail M, Morgan BR et al (2019) Connectomic profiling identifies responders to vagus nerve stimulation. Ann Neurol 86(5):743–753. https://doi.org/10.1002/ana.25574

    Article  PubMed  Google Scholar 

  9. Wang HJ, Tan G, Zhu LN et al (2019) Predictors of seizure reduction outcome after vagus nerve stimulation in drug-resistant epilepsy. Seizure. 66:53–60. https://doi.org/10.1016/j.seizure.2019.02.010

    Article  PubMed  Google Scholar 

  10. Englot DJ, Chang EF, Auguste KI (2011) Vagus nerve stimulation for epilepsy: a meta-analysis of efficacy and predictors of response - a review. J Neurosurg 115(6):1248–1255. https://doi.org/10.3171/2011.7.JNS11977

    Article  PubMed  Google Scholar 

  11. Toole C, Martinez-Juárez IE, Gaitanis JN et al (2019) Source localization of high-frequency activity in tripolar electroencephalography of patients with epilepsy. Epilepsy Behav 101:106519. https://doi.org/10.1016/j.yebeh.2019.106519

    Article  PubMed  Google Scholar 

  12. Myers KA, Sivathamboo S, Perucca P (2018) Heart rate variability measurement in epilepsy: how can we move from research to clinical practice? Epilepsia 59(12):2169–2178. https://doi.org/10.1111/epi.14587

    Article  PubMed  Google Scholar 

  13. Liberati A, Altman DG, Tetzlaff J et al (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ (Clin Res Ed). https://doi.org/10.1136/bmj.b2700

    Article  Google Scholar 

  14. van Putten MJAM, Tavy DLJ (2004) Continuous quantitative EEG monitoring in hemispheric stroke patients using the brain symmetry index. In: Stroke. Vol 35. Lippincott Williams & Wilkins, pp 2489–2492. https://doi.org/10.1161/01.STR.0000144649.49861.1d

  15. Peters JM, Tomas-Fernandez M, van Putten MJAM, Loddenkemper T (2012) Behavioral measures and EEG monitoring using the brain symmetry index during the Wada test in children. Epilepsy Behav 23(3):247–253. https://doi.org/10.1016/j.yebeh.2011.12.017

    Article  PubMed  Google Scholar 

  16. Sheorajpanday RVA, Nagels G, Weeren AJTM, van Putten MJAM, de Deyn PP (2009) Reproducibility and clinical relevance of quantitative EEG parameters in cerebral ischemia: a basic approach. Clin Neurophysiol 120(5):845–855. https://doi.org/10.1016/j.clinph.2009.02.171

    Article  PubMed  Google Scholar 

  17. de Vos CC, Melching L, van Schoonhoven J et al (2011) Predicting success of vagus nerve stimulation (VNS) from interictal EEG. Seizure 20(7):541–545. https://doi.org/10.1016/j.seizure.2011.04.002

    Article  PubMed  Google Scholar 

  18. Hilderink J, Tjepkema-Cloostermans MC, Geertsema A, Glastra-Zwiers J, de Vos CC (2017) Predicting success of vagus nerve stimulation (VNS) from EEG symmetry. Seizure 48:69–73. https://doi.org/10.1016/j.seizure.2017.03.020

    Article  PubMed  Google Scholar 

  19. Strehl U, Leins U, Goth G, Klinger C, Hinterberger T, Birbaumer N (2006) Self-regulation of slow cortical potentials: a new treatment for children with attention-deficit/hyperactivity disorder. Pediatrics 118(5):e1530–e1540. https://doi.org/10.1542/peds.2005-2478

    Article  PubMed  Google Scholar 

  20. Bayasgalan B, Matsuhashi M, Fumuro T et al (2017) We could predict good responders to vagus nerve stimulation: a surrogate marker by slow cortical potential shift. Clin Neurophysiol 128(9):1583–1589. https://doi.org/10.1016/j.clinph.2017.05.019

    Article  PubMed  Google Scholar 

  21. Stam CJ, Nolte G, Daffertshofer A (2007) Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Hum Brain Mapp 28(11):1178–1193. https://doi.org/10.1002/hbm.20346

    Article  PubMed  PubMed Central  Google Scholar 

  22. Fell J, Axmacher N (2011) The role of phase synchronization in memory processes. Nat Rev Neurosci 12(2):105–118. https://doi.org/10.1038/nrn2979

    Article  CAS  PubMed  Google Scholar 

  23. Bodin C, Aubert S, Daquin G et al (2015) Responders to vagus nerve stimulation (VNS) in refractory epilepsy have reduced interictal cortical synchronicity on scalp EEG. Epilepsy Res 113:98–103. https://doi.org/10.1016/j.eplepsyres.2015.03.018

    Article  PubMed  Google Scholar 

  24. Fraschini M, Puligheddu M, Demuru M et al (2013) VNS induced desynchronization in gamma bands correlates with positive clinical outcome in temporal lobe pharmacoresistant epilepsy. Neurosci Lett 536(1):14–18. https://doi.org/10.1016/j.neulet.2012.12.044

    Article  CAS  PubMed  Google Scholar 

  25. Duncan CC, Barry RJ, Connolly JF et al (2009) Event-related potentials in clinical research: guidelines for eliciting, recording, and quantifying mismatch negativity, P300, and N400. Clin Neurophysiol 120(11):1883–1908. https://doi.org/10.1016/j.clinph.2009.07.045

    Article  PubMed  Google Scholar 

  26. Woodman GF (2010) A brief introduction to the use of event-related potentials in studies of perception and attention. Atten Percept Psychophys 72(8):2031–2046. https://doi.org/10.3758/BF03196680

    Article  PubMed  Google Scholar 

  27. Sowndhararajan K, Kim M, Deepa P, Park SJ, Kim S (2018) Application of the p300 event-related potential in the diagnosis of epilepsy disorder: a review. Sci Pharm 86(2). https://doi.org/10.3390/scipharm86020010

  28. Chan AY, Rolston JD, Rao VR, Chang EF (2018) Effect of neurostimulation on cognition and mood in refractory epilepsy. Epilepsia Open 3(1):18–29. https://doi.org/10.1002/epi4.12100

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wostyn S, Staljanssens W, de Taeye L et al (2017) EEG derived brain activity reflects treatment response from vagus nerve stimulation in patients with epilepsy. Int J Neural Syst 27(4). https://doi.org/10.1142/S0129065716500489

  30. de Taeye L, Vonck K, van Bochove M et al (2014) The P3 event-related potential is a biomarker for the efficacy of vagus nerve stimulation in patients with epilepsy. Neurotherapeutics 11(3):612–622. https://doi.org/10.1007/s13311-014-0272-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hödl S, Carrette S, Meurs A et al (2020) Neurophysiological investigations of drug resistant epilepsy patients treated with vagus nerve stimulation to differentiate responders from non-responders. Eur J Neurol 27(7):1178–1189. https://doi.org/10.1111/ene.14270

    Article  PubMed  Google Scholar 

  32. Malik M, John Camm A, Thomas Bigger J et al (1996) Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Circulation 93(5):1043–1065. https://doi.org/10.1161/01.cir.93.5.1043

    Article  Google Scholar 

  33. Fuster V, Rydén LE, Asinger RW et al (2001) ACC/AHA/ESC guidelines for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines and the European Society of Cardiology Committee for Practice Guidelines and Policy Conferences (committee to develop guidelines for the management of patients with atrial fibrillation). Eur Heart J 22(20):1852–1923. https://doi.org/10.1053/euhj.2001.2983

    Article  CAS  PubMed  Google Scholar 

  34. Shaffer F, McCraty R, Zerr CL (2014) A healthy heart is not a metronome: an integrative review of the heart’s anatomy and heart rate variability. Front Psychol. https://doi.org/10.3389/fpsyg.2014.01040

    Article  PubMed  PubMed Central  Google Scholar 

  35. Umetani K, Singer DH, McCraty R, Atkinson M (1998) Twenty-four hour time domain heart rate variability and heart rate: relations to age and gender over nine decades. J Am Coll Cardiol 31(3):593–601. https://doi.org/10.1016/S0735-1097(97)00554-8

    Article  CAS  PubMed  Google Scholar 

  36. Bernardi L, Valle F, Coco M, Calciati A, Sleight P (1996) Physical activity influences heart rate variability and very-low-frequency components in Holter electrocardiograms. Cardiovasc Res 32(2):234–237. https://doi.org/10.1016/0008-6363(96)00081-8

    Article  CAS  PubMed  Google Scholar 

  37. Berntson GG, Cacioppo JT, Grossman P (2007) Whither vagal tone. Biol Psychol 74(2):295–300. https://doi.org/10.1016/j.biopsycho.2006.08.006

    Article  PubMed  Google Scholar 

  38. Grossman P, Taylor EW (2007) Toward understanding respiratory sinus arrhythmia: relations to cardiac vagal tone, evolution and biobehavioral functions. Biol Psychol 74(2):263–285. https://doi.org/10.1016/j.biopsycho.2005.11.014

    Article  PubMed  Google Scholar 

  39. Billman GE (2013) The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance. Front Physiol. https://doi.org/10.3389/fphys.2013.00026

    Article  PubMed  PubMed Central  Google Scholar 

  40. Liu HY, Yang Z, Meng FG et al (2018) Preoperative heart rate variability as predictors of vagus nerve stimulation outcome in patients with drug-resistant epilepsy. Sci Rep 8(1). https://doi.org/10.1038/s41598-018-21669-3

  41. Liu H, Yang Z, Meng F et al (2018) Chronic vagus nerve stimulation reverses heart rhythm complexity in patients with drug-resistant epilepsy: an assessment with multiscale entropy analysis. Epilepsy Behav 83:168–174. https://doi.org/10.1016/j.yebeh.2018.03.035

    Article  PubMed  Google Scholar 

  42. Benbadis SR, Beniczky S, Bertram E, MacIver S, Moshé SL (2020) The role of EEG in patients with suspected epilepsy. Epileptic Disord 22(2):143–155. https://doi.org/10.1684/epd.2020.1151

    Article  PubMed  Google Scholar 

  43. Koutroumanidis M, Arzimanoglou A, Caraballo R et al (2017) The role of EEG in the diagnosis and classification of the epilepsy syndromes: a tool for clinical practice by the ILAE Neurophysiology Task Force (Part 1). Epileptic Disord 19(3):233–298. https://doi.org/10.1684/epd.2017.0935

    Article  PubMed  Google Scholar 

  44. Tatum WO, Rubboli G, Kaplan PW et al (2018) Clinical utility of EEG in diagnosing and monitoring epilepsy in adults. Clin Neurophysiol 129(5):1056–1082. https://doi.org/10.1016/j.clinph.2018.01.019

    Article  CAS  PubMed  Google Scholar 

  45. Stecker MM, Sabau D, Sullivan LR et al (2016) American Clinical Neurophysiology Society Guideline 6: minimum technical standards for EEG recording in suspected cerebral death. Neurodiagnostic Journal 56(4):276–284. https://doi.org/10.1080/21646821.2016.1245575

    Article  PubMed  Google Scholar 

  46. Ghaemi K, Elsharkawy AE, Schulz R et al (2010) Vagus nerve stimulation: outcome and predictors of seizure freedom in long-term follow-up. Seizure 19(5):264–268

    Article  PubMed  Google Scholar 

  47. Jaseja H (2010) EEG-desynchronization as the major mechanism of anti-epileptic action of vagal nerve stimulation in patients with intractable seizures: clinical neurophysiological evidence. Med Hypotheses 74(5):855–856

    Article  PubMed  Google Scholar 

  48. Gang Y, Malik M (2003) Heart rate variability analysis in general medicine. Ind Pacing Electrophysiol J 3(1):34–40. Accessed 26 May 2021. http://www.ncbi.nlm.nih.gov/pubmed/16943988

  49. Zhang Y, Popovi ZB, Bibevski S et al (2009) Chronic vagus nerve stimulation improves autonomic control and attenuates systemic inflammation and heart failure progression in a canine high-rate pacing model. Published online. https://doi.org/10.1161/CIRCHEARTFAILURE.109.873968

    Article  Google Scholar 

  50. Mridha Z, Gee de JW, Shi Y et al (2019) Graded recruitment of pupil-linked neuromodulation by parametric stimulation of the vagus nerve. bioRxiv. Published online December 30, 2019:12.28.890111. https://doi.org/10.1101/2019.12.28.890111

  51. Desbeaumes Jodoin V, Lespérance P, Nguyen DK, Fournier-Gosselin MP, Richer F (2015) Effects of vagus nerve stimulation on pupillary function. Int J Psychophysiol 98(3):455–459. https://doi.org/10.1016/j.ijpsycho.2015.10.001

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarosh Irfan Madhani.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madhani, S., Abbasi, M., Liu, Y. et al. Electroencephalogram and heart rate variability features as predictors of responsiveness to vagus nerve stimulation in patients with epilepsy: a systematic review. Childs Nerv Syst 38, 2083–2090 (2022). https://doi.org/10.1007/s00381-022-05653-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-022-05653-x

Keywords

Navigation