Log in

Evaluating H3F3A K27M and G34R/V somatic mutations in a cohort of pediatric brain tumors of different and rare histologies

  • Original Article
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Purpose

Somatic mutations on H3 histone are currently considered a genetic hallmark for midline pediatric high-grade gliomas (HGGs). Yet, different tumor histologies have been occasionally described to carry these mutations. Since histone modifications can lead to major epigenetic changes with direct impact on prognosis and treatment, we thought to investigate the occurrence of H3F3A K27M and G34R/V mutations in a cohort of pediatric tumors which included HGGs, low-grade gliomas, ependymomas, medulloblastomas, and a series of rare brain tumor lesions of different histologies.

Methods

A total of 82 fresh-frozen pediatric brain tumor samples were evaluated. PCR or RT-PCR followed by Sanger sequencing for the exon 2 of H3F3A (containing both K27 and G34 hotspots) were obtained and aligned to human genome. Loss of trimethylation mark (H3K27me3) in H3F3A/K27M-mutant samples was confirmed by immunohistochemistry.

Results

We found H3F3A/K27M mutation in 2 out of 9 cases of HGGs; no H3F3A/K27M mutations were detected in low-grade gliomas (27), ependymomas (n = 10), medulloblastomas (n = 21), or a series of rare pediatric brain tumors which included meningiomas, dysembryoplastic neuroepithelial tumors (DNETs), central nervous system (CNS) germ-cell tumors, choroid plexus tumors, cortical hamartoma, subcortical tubers, and schwannomas (n = 15). H3F3A/G34R/V mutation was not observed in any of the samples.

Conclusions

Our investigation reinforces the low frequency of H3F3A somatic mutations outside the HGG setting. Interestingly, an atypical focal brainstem glioma carrying H3F3A K27M mutation that showed protracted clinical course with late-onset tumor progression was identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All data generated from this study are presented in this article.

References

  1. Schwartzentruber J, Korshunov A, Liu X-Y, Jones DTW, Pfaff E, Jacob K, Sturm D, Fontebasso AM, Quang DAK, Tönjes M, Hovestadt V, Albrecht S, Kool M, Nantel A, Konermann C, Lindroth A, Jäger N, Rausch T, Ryzhova M, Korbel JO, Hielscher T, Hauser P, Garami M, Klekner A, Bognar L, Ebinger M, Schuhmann MU, Scheurlen W, Pekrun A, Frühwald MC, Roggendorf W, Kramm C, Dürken M, Atkinson J, Lepage P, Montpetit A, Zakrzewska M, Zakrzewski K, Liberski PP, Dong Z, Siegel P, Kulozik AE, Zapatka M, Guha A, Malkin D, Felsberg J, Reifenberger G, von Deimling A, Ichimura K, Collins VP, Witt H, Milde T, Witt O, Zhang C, Castelo-Branco P, Lichter P, Faury D, Tabori U, Plass C, Majewski J, Pfister SM, Jabado N (2012) Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482:226–231. https://doi.org/10.1038/nature10833

    Article  CAS  PubMed  Google Scholar 

  2. Wu G, Broniscer A, McEachron TA, Lu C, Paugh BS, Becksfort J, Qu C, Ding L, Huether R, Parker M, Zhang J, Gajjar A, Dyer MA, Mullighan CG, Gilbertson RJ, Mardis ER, Wilson RK, Downing JR, Ellison DW, Zhang J, Baker SJ, St. Jude Children's Research Hospital–Washington University Pediatric Cancer Genome Project (2012) Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet 44:251–253. https://doi.org/10.1038/ng.1102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yamamoto H, Iwasaki T, Yamada Y, Matsumoto Y, Otsuka H, Yoshimoto M, Kohashi K, Taguchi K, Yokoyama R, Nakashima Y, Oda Y (2018) Diagnostic utility of histone H3.3 G34W, G34R, and G34V mutant-specific antibodies for giant cell tumors of bone. Hum Pathol 73:41–50. https://doi.org/10.1016/j.humpath.2017.11.020

    Article  CAS  PubMed  Google Scholar 

  4. Kallappagoudar S, Yadav RK, Lowe BR, Partridge JF (2015) Histone H3 mutations — a special role for H3.3 in tumorigenesis? Chromosoma 124(2):177–189. https://doi.org/10.1007/s00412-015-0510-4

  5. Karremann M, Gielen GH, Hoffmann M, Wiese M, Colditz N, Warmuth-Metz M, Bison B, Claviez A, van Vuurden DG, von Bueren AO, Gessi M, Kühnle I, Hans VH, Benesch M, Sturm D, Kortmann RD, Waha A, Pietsch T, Kramm CM (2018) Diffuse high-grade gliomas with H3 K27M mutations carry a dismal prognosis independent of tumor location. Neuro-Oncology 20:123–131. https://doi.org/10.1093/neuonc/nox149

    Article  CAS  PubMed  Google Scholar 

  6. Nambirajan A, Suri V, Kedia S, Goyal K, Malgulwar PB, Khanna G, Panda PK, Gulati S, Garg A, Sharma MC (2018) Paediatric diffuse leptomeningeal tumor with glial and neuronal differentiation harbouring chromosome 1p/19q co-deletion and H3.3 K27M mutation: unusual molecular profile and its therapeutic implications. Brain Tumor Pathol 35:186–191. https://doi.org/10.1007/s10014-018-0325-0

    Article  CAS  PubMed  Google Scholar 

  7. Ryall S, Guzman M, Elbabaa SK, Luu B, Mack SC, Zapotocky M, Taylor MD, Hawkins C, Ramaswamy V (2017) H3 K27M mutations are extremely rare in posterior fossa group A ependymoma. Childs Nerv Syst 33:1047–1051. https://doi.org/10.1007/s00381-017-3481-3

    Article  PubMed  Google Scholar 

  8. Okuda T, Hata N, Suzuki SO, Yoshimoto K, Arimura K, Amemiya T, Akagi Y, Kuga D, Oba U, Koga Y, Ohga S, Iwaki T, Iihara K (2018) Pediatric ganglioglioma with an H3 K27M mutation arising from the cervical spinal cord. Neuropathology 38:422–427. https://doi.org/10.1111/neup.12471

    Article  CAS  Google Scholar 

  9. Yao K, Duan Z, Wang Y, Zhang M, Fan T, Wu B, Qi X (2019) Detection of H3K27M mutation in cases of brain stem subependymoma. Hum Pathol 84:262–269. https://doi.org/10.1016/j.humpath.2018.10.011

    Article  CAS  PubMed  Google Scholar 

  10. Ebrahimi A, Skardelly M, Schuhmann MU, Ebinger M, Reuss D, Neumann M, Tabatabai G, Kohlhof-Meinecke P, Schittenhelm J (2019) High frequency of H3 K27M mutations in adult midline gliomas. J Cancer Res Clin Oncol 145:839–850. https://doi.org/10.1007/s00432-018-02836-5

    Article  CAS  PubMed  Google Scholar 

  11. Meyronet D, Esteban-Mader M, Bonnet C, Joly MO, Uro-Coste E, Amiel-Benouaich A, Forest F, Rousselot-Denis C, Burel-Vandenbos F, Bourg V, Guyotat J, Fenouil T, Jouvet A, Honnorat J, Ducray F (2017) Characteristics of H3 K27M-mutant gliomas in adults. Neuro-Oncology 19:1127–1134. https://doi.org/10.1093/neuonc/now274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Panwalkar P, Clark J, Ramaswamy V, Hawes D, Yang F, Dunham C, Yip S, Hukin J, Sun Y, Schipper MJ, Chavez L, Margol A, Pekmezci M, Chung C, Banda A, Bayliss JM, Curry SJ, Santi M, Rodriguez FJ, Snuderl M, Karajannis MA, Saratsis AM, Horbinski CM, Carret AS, Wilson B, Johnston D, Lafay-Cousin L, Zelcer S, Eisenstat D, Silva M, Scheinemann K, Jabado N, McNeely PD, Kool M, Pfister SM, Taylor MD, Hawkins C, Korshunov A, Judkins AR, Venneti S (2017) Immunohistochemical analysis of H3K27me3 demonstrates global reduction in group-A childhood posterior fossa ependymoma and is a powerful predictor of outcome. Acta Neuropathol 134:705–714. https://doi.org/10.1007/s00401-017-1752-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Khuong-Quang D-A, Buczkowicz P, Rakopoulos P, Liu XY, Fontebasso AM, Bouffet E, Bartels U, Albrecht S, Schwartzentruber J, Letourneau L, Bourgey M, Bourque G, Montpetit A, Bourret G, Lepage P, Fleming A, Lichter P, Kool M, von Deimling A, Sturm D, Korshunov A, Faury D, Jones DT, Majewski J, Pfister SM, Jabado N, Hawkins C (2012) K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Neuropathol 124:439–447. https://doi.org/10.1007/s00401-012-0998-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chi AS, Tarapore RS, Hall MD, Shonka N, Gardner S, Umemura Y, Sumrall A, Khatib Z, Mueller S, Kline C, Zaky W, Khatua S, Weathers SP, Odia Y, Niazi TN, Daghistani D, Cherrick I, Korones D, Karajannis MA, Kong XT, Minturn J, Waanders A, Arillaga-Romany I, Batchelor T, Wen PY, Merdinger K, Schalop L, Stogniew M, Allen JE, Oster W, Mehta MP (2019) Pediatric and adult H3 K27M-mutant diffuse midline glioma treated with the selective DRD2 antagonist ONC201. J Neuro-Oncol 145:97–105. https://doi.org/10.1007/s11060-019-03271-3

    Article  CAS  Google Scholar 

  15. Sturm D, Witt H, Hovestadt V, Khuong-Quang DA, Jones DTW, Konermann C, Pfaff E, Tönjes M, Sill M, Bender S, Kool M, Zapatka M, Becker N, Zucknick M, Hielscher T, Liu XY, Fontebasso AM, Ryzhova M, Albrecht S, Jacob K, Wolter M, Ebinger M, Schuhmann MU, van Meter T, Frühwald MC, Hauch H, Pekrun A, Radlwimmer B, Niehues T, von Komorowski G, Dürken M, Kulozik AE, Madden J, Donson A, Foreman NK, Drissi R, Fouladi M, Scheurlen W, von Deimling A, Monoranu C, Roggendorf W, Herold-Mende C, Unterberg A, Kramm CM, Felsberg J, Hartmann C, Wiestler B, Wick W, Milde T, Witt O, Lindroth AM, Schwartzentruber J, Faury D, Fleming A, Zakrzewska M, Liberski PP, Zakrzewski K, Hauser P, Garami M, Klekner A, Bognar L, Morrissy S, Cavalli F, Taylor MD, van Sluis P, Koster J, Versteeg R, Volckmann R, Mikkelsen T, Aldape K, Reifenberger G, Collins VP, Majewski J, Korshunov A, Lichter P, Plass C, Jabado N, Pfister SM (2012) Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22:425–437. https://doi.org/10.1016/j.ccr.2012.08.024

    Article  CAS  PubMed  Google Scholar 

  16. Wang Z, Sun K, **g C, Cao H, Ma R, Wu J (2019) Comparison of droplet digital PCR and direct Sanger sequencing for the detection of the BRAF V600E mutation in papillary thyroid carcinoma. J Clin Lab Anal 33:e22902. https://doi.org/10.1002/jcla.22902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Arsenic R, Treue D, Lehmann A, Hummel M, Dietel M, Denkert C, Budczies J (2015) Comparison of targeted next-generation sequencing and Sanger sequencing for the detection of PIK3CA mutations in breast cancer. BMC Clin Pathol 15:20. https://doi.org/10.1186/s12907-015-0020-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Huang T, Garcia R, Qi J et al (2018) Detection of histone H3 K27M mutation and post-translational modifications in pediatric diffuse midline glioma via tissue immunohistochemistry informs diagnosis and clinical outcomes. Oncotarget 9:37112–37124. https://doi.org/10.18632/oncotarget.26430

    Article  PubMed  PubMed Central  Google Scholar 

  19. Castel D, Kergrohen T, Tauziède-Espariat A, Mackay A, Ghermaoui S, Lechapt E, Pfister SM, Kramm CM, Boddaert N, Blauwblomme T, Puget S, Beccaria K, Jones C, Jones DTW, Varlet P, Grill J, Debily MA (2020) Histone H3 wild-type DIPG/DMG overexpressing EZHIP extend the spectrum diffuse midline gliomas with PRC2 inhibition beyond H3-K27M mutation. Acta Neuropathol 139:1109–1113. https://doi.org/10.1007/s00401-020-02142-w

    Article  PubMed  Google Scholar 

  20. Bender S, Tang Y, Lindroth AM, Hovestadt V, Jones DTW, Kool M, Zapatka M, Northcott PA, Sturm D, Wang W, Radlwimmer B, Højfeldt JW, Truffaux N, Castel D, Schubert S, Ryzhova M, Şeker-Cin H, Gronych J, Johann PD, Stark S, Meyer J, Milde T, Schuhmann M, Ebinger M, Monoranu CM, Ponnuswami A, Chen S, Jones C, Witt O, Collins VP, von Deimling A, Jabado N, Puget S, Grill J, Helin K, Korshunov A, Lichter P, Monje M, Plass C, Cho YJ, Pfister SM (2013) Reduced H3K27me3 and DNA hypomethylation are major drivers of gene expression in K27M mutant pediatric high-grade gliomas. Cancer Cell 24:660–672. https://doi.org/10.1016/j.ccr.2013.10.006

    Article  CAS  PubMed  Google Scholar 

  21. Diehl KL, Ge EJ, Weinberg DN, Jani KS, Allis CD, Muir TW (2019) PRC2 engages a bivalent H3K27M-H3K27me3 dinucleosome inhibitor. Proc Natl Acad Sci 116:22152–22157. https://doi.org/10.1073/pnas.1911775116

    Article  CAS  PubMed  Google Scholar 

  22. Lewis PW, Muller MM, Koletsky MS et al (2013) Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science 340:857–861. https://doi.org/10.1126/science.1232245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mohammad F, Weissmann S, Leblanc B, Pandey DP, Højfeldt JW, Comet I, Zheng C, Johansen JV, Rapin N, Porse BT, Tvardovskiy A, Jensen ON, Olaciregui NG, Lavarino C, Suñol M, de Torres C, Mora J, Carcaboso AM, Helin K (2017) EZH2 is a potential therapeutic target for H3K27M-mutant pediatric gliomas. Nat Med 23:483–492. https://doi.org/10.1038/nm.4293

    Article  CAS  PubMed  Google Scholar 

  24. Li HN, Shan CG, Fan CZ et al (2019) Clinicopathological characteristics and prognosis of diffuse midline gliomas with histone H3K27M mutation: an analysis of 30 cases. Zhonghua Bing Li Xue Za Zhi 48:192–198. https://doi.org/10.3760/cma.j.issn.0529-5807.2019.03.005

    Article  CAS  PubMed  Google Scholar 

  25. Castel D, Philippe C, Calmon R, le Dret L, Truffaux N, Boddaert N, Pagès M, Taylor KR, Saulnier P, Lacroix L, Mackay A, Jones C, Sainte-Rose C, Blauwblomme T, Andreiuolo F, Puget S, Grill J, Varlet P, Debily MA (2015) Histone H3F3A and HIST1H3B K27M mutations define two subgroups of diffuse intrinsic pontine gliomas with different prognosis and phenotypes. Acta Neuropathol 130:815–827. https://doi.org/10.1007/s00401-015-1478-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mackay A, Burford A, Carvalho D et al (2017) Integrated molecular meta-analysis of 1,000 pediatric high-grade and diffuse intrinsic pontine glioma. Cancer Cell 32:520–537.e5. https://doi.org/10.1016/j.ccell.2017.08.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bozkurt SU, Dagcinar A, Tanrikulu B, Comunoglu N, Meydan BC, Ozek M, Oz B (2018) Significance of H3K27M mutation with specific histomorphological features and associated molecular alterations in pediatric high-grade glial tumors. Childs Nerv Syst 34:107–116. https://doi.org/10.1007/s00381-017-3633-5

    Article  PubMed  Google Scholar 

  28. Larson JD, Kasper LH, Paugh BS et al (2019) Histone H3.3 K27M accelerates spontaneous brainstem glioma and drives restricted changes in bivalent gene expression. Cancer Cell 35:140–155.e7. https://doi.org/10.1016/j.ccell.2018.11.015

    Article  CAS  PubMed  Google Scholar 

  29. Hochart A, Escande F, Rocourt N, Grill J, Koubi-Pick V, Beaujot J, Meignan S, Vinchon M, Maurage CA, Leblond P (2015) Long survival in a child with a mutated K27M-H3.3 pilocytic astrocytoma. Ann Clin Transl Neurol 2:439–443. https://doi.org/10.1002/acn3.184

    Article  PubMed  PubMed Central  Google Scholar 

  30. Nakano Y, Yamasaki K, Sakamoto H, Matsusaka Y, Kunihiro N, Fukushima H, Inoue T, Honda-Kitahara M, Hara J, Yoshida A, Ichimura K (2019) A long-term survivor of pediatric midline glioma with H3F3A K27M and BRAF V600E double mutations. Brain Tumor Pathol 36:162–168. https://doi.org/10.1007/s10014-019-00347-w

    Article  CAS  PubMed  Google Scholar 

  31. Baroni LV, Solano-Paez P, Nobre L et al (2020) Indolent course of brainstem tumors with K27M-H3.3 mutation. Pediatr Blood Cancer. https://doi.org/10.1002/pbc.28102

Download references

Acknowledgments

We thank Dr. Luciano Neder for pathological assistance and expertise on cases.

Funding

FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo – grant no. 2018/20275-8)/Brazil, as part of Scientific Initiation Program (granted by Medical Student Vinicius Fernandes Oliveira)

Author information

Authors and Affiliations

Authors

Contributions

E.T.V., V.F.O., and G.R.S. planned the study, conducted data analysis, and drafted the manuscript; F.P.S. performed data analysis and immunohistochemistry; A.C.S. performed image analysis and intellectual content; H.R.M., R.S.O., and L.G.T. proceeded sample collection and revised text for important intellectual content. V.F.O and G.R.S. wrote and organized the data, created the figures/tables, and edited and finalized the manuscript. All authors critically read and approved the final manuscript.

Corresponding author

Correspondence to Elvis Terci Valera.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethics approval

Tumor collection (brain tumor repository) was performed under the approval of the Institutional Review Board (IRB) (#6591/2007). This study was also Institutional Review Board (IRB) approved (CAAE# 14154819.6.0000.5440).

Consent to participate

Obtained by signed informed consent

Consent for publication

Not applicable

Code availability

Not applicable

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplemental Figure 1.

IHC staining for H3K27me3 on 14 cases of pediatric midline gliomas H3F3A K27 wild-type, showing a retained pattern of this histone trimethylation marker. (JPG 10297 kb).

ESM 2

(DOCX 16 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, V.F., De Sousa, G.R., dos Santos, A.C. et al. Evaluating H3F3A K27M and G34R/V somatic mutations in a cohort of pediatric brain tumors of different and rare histologies. Childs Nerv Syst 37, 375–382 (2021). https://doi.org/10.1007/s00381-020-04852-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-020-04852-8

Keywords

Navigation